Lattice QCD and high-intensity frontier

Xu Feng (冯旭)

The 7th China LHC Physics Workshop (CLHCP2021)

Discovery of Higgs boson \Rightarrow Nobel prize to Englert & Higgs

 \Rightarrow The final particle in the Standard Model is found!

Three frontiers to search for Physics Beyond Standard Model

• Cosmic frontier

 \Rightarrow detect dark matter, energy and cosmically-produced new particles

• High-energy frontier

 \Rightarrow increase collision energy, directly produce new particles

• High-intensity frontier

 \Rightarrow precisely measure rare processes, look for discrepancies with SM

This requires the precise prediction from Standard Model

Short slab of cask: non-perturabtive QCD obstructs the predication

QCD is the fundamental theory

- $\Rightarrow~$ describing strong interaction between quarks and gluons
- High-Q (> few GeV) \leftrightarrow short distance (< 0.1 fm)
 - \Rightarrow Theory of weakly interacting quarks and gluons
 - \Rightarrow (Perturbative QCD: Gross, Politzer, Wilczek for asymptotic freedom)
- Low-Q ($\ll 1 \text{ GeV}$) \leftrightarrow long distance (> 1 fm)
 - \Rightarrow Spontaneous chiral symmetry breaking
 - \Rightarrow EFT of weakly interacting Nambu-Goldstone bosons
 - \Rightarrow EFT treats hadrons as dynamical degree of freedom (no quarks, gluons)

• Lattice QCD

- \Rightarrow Large-scale supercomputer simulation on Euclidean spacetime lattice
 - Provide most accurate α_s for pQCD
 - Provide LECs for EFT

Application of LQCD: Muon g-2

Contributions from the Standard Model

 $a_{\mu}(SM)=a_{\mu}(QED)+a_{\mu}(Weak)+a_{\mu}(Hadronic)$

Uncertainty dominated by hadronic contributions

Discrepancy between theory and experiment

Hadronic vacuum polarization contributions

Results from BMW Collaboration

"Our lattice result shows some tension with the R-ratio determinations of refs.3– 6. Obviously, our findings should be confirmed - or refuted - by other studies using different discretizations of QCD. Those investigations are underway." - quoted from BMW's paper - Nature (2021)

Application of LQCD: Kaon decays and CP violation

[RBC-UKQCD, latest results, arXiv:2004.09440]

• CP violation: $\operatorname{Re}[\epsilon'/\epsilon]$ $\operatorname{Re}[\epsilon'/\epsilon] = 21.7(2.6)_{\operatorname{stat}}(8.0)_{\operatorname{syst}} \times 10^{-4}$

 ${
m Re}[\epsilon'/\epsilon] = 16.6(2.3) imes 10^{-4}$ Experiment

Lattice

theoretical uncertainty \sim 40%, experimental uncertainty \sim 14%, theory consistent with experiment

Application of LQCD: Flavor physics

Evaluate the hadronic matrix elements for electroweak processes

• Lattice QCD is powerful for "standard" hadronic matrix elements with

single local operator insertion

- only single stable hadron or vacuum in the initial/final state
- Requires only two- or three-point correlation functions

Precision era for lattice QCD

Flavor Lattice Averaging Group (FLAG) average 2021 [arXiv:2111.09849]

 $f_{+}^{K_{\pi}}(0) = 0.9698(17) \Rightarrow 0.18\%$ error $f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1932(21) \Rightarrow 0.18\%$ error

Experimental information [arXiv:1411.5252, 1509.02220]

$$\begin{array}{lll} \mathcal{K}_{\ell 3} & \Rightarrow & |V_{us}|f_{+}(0) = 0.2165(4) & \Rightarrow & |V_{us}| = 0.2232(6) \\ \mathcal{K}_{\mu 2}/\pi_{\mu 2} & \Rightarrow & \left|\frac{V_{us}}{V_{ud}}\right|\frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.2760(4) & \Rightarrow & \left|\frac{V_{us}}{V_{ud}}\right| = 0.2320(5) \\ \end{array}$$

Flag average 2021

 $\operatorname{Error} < 1\%$

-	N/				
_			N _f	FLAG average	Frac. Err.
	f_K/f_π	2+	1+1	1.1932(21)	0.18%
	$f_{+}(0)$	2 +	1+1	0.9698(17)	0.18%
	f_D	2+	1+1	212.0(7) MeV	0.33%
	f_{D_s}	2+	1+1	249.9(5) MeV	0.20%
	f_{D_s}/f_D	2+	1+1	1.1783(16)	0.13%
	$f_{\pm}^{DK}(0)$	2+	1+1	0.7385(44)	0.60%
	f _B	2+	1+1	190.0(1.3) MeV	0.68%
	f _{Be}	2 +	1+1	230.3(1.3) MeV	0.56%
	f_{B_s}/f_B	2+	1+1	1.209(5)	0.41%
Error < 5%	5,				
			N _f	FLAG average	Frac. Err.
	Âκ		2 + 1	0.7625(97)	1.3%
	$f_{+}^{D\pi}(0)$	D)	2 + 1	0.666(29)	4.4%
	ÊB _B		2 + 1	1.35(6)	4.4%
	B_{B_s}/B_s	B_d	2 + 1	1.032(28)	3.7%

Time to go beyond leading-order electroweak transitions

Exploration at new frontiers

Go for higher-order electroweak processes – opportunities

Opportunities in flavor physics

• Rare decays, e.g. ${\sf Br}[{\cal K}^+ o \pi^+ \nu \bar{
u}] = 1.73^{+1.15}_{-1.05} imes 10^{-10}$

Electroweak radative corrections to hadronic decays

 \Rightarrow superallowed nuclear β decay half-life time with precision 10^{-6}

- Proton's weak charge $Q_W^{\rho} = 1 4 \sin^2 \theta_W$ $\Rightarrow 0.3\%$ -precision measurement of $\sin^2 \theta_W$ by Q-weak at JLab
 - Parity-violating e-p scattering, $\Box_{\gamma Z}^V$ contribution

Go for higher-order electroweak processes – opportunities

Opportunities in nuclear physics

- Muonic hydrogen spectrum \rightarrow proton charge radius $r_{
 m p}=0.84087(39)$ fm
 - \Rightarrow 10 times more accurate than e-p scattering

• Neutrinoless double beta decays

• Hadron electromagnetic polarizability

Go for higher-order electroweak processes – challenges

Computational demanding

• Three-point function

 $\langle H_f(x_f)O(0)H_i^{\dagger}(x_i)\rangle \quad \Rightarrow \quad \int d^3 \vec{x}_i \int d^3 \vec{x}_f \quad \Rightarrow \quad \sum \sum \sim L^6$

Four-point function

 $\langle H_f(x_f)O_1(x)O_2(0)H_i^{\dagger}(x_i)\rangle\rangle \quad \Rightarrow \quad \int d^3\vec{x}_i \int d^3\vec{x}_f \int d^3\vec{x} \quad \Rightarrow \quad \sum_{\vec{x}}\sum_{\vec{x}_i}\sum_{\vec{x}_i}\sim L^9$

with $L = 24, 32, 48, 64, 96, \cdots$

Field sparsening technique

Y. Li, S. Xia, XF, L. Jin, C. Liu, PRD 103 (2021) 014514

Go for higher-order electroweak processes – challenges

Divergence due to intermediate multi-particle states

$$\int dt \langle H_f | O_1(t) O_2(0) | H_i \rangle = \sum_n \frac{\langle H_f | O_1(0) | n \rangle \langle n | O_2(0) | H_i \rangle}{E_n - E_i}$$

- In finite volume, state $|n\rangle$ is discrete \Rightarrow Divergence at $E_n \approx E_i$
- In infinite volume, summation \sum_{n} replaced by $\int dE \Rightarrow$ No divergence

Development of finite-volume correction formula

$$\Delta_{FV} = \frac{k}{16\pi E} \cot(\phi + \delta) \big| \langle H_f | O_1(0) | n \rangle_{\infty \infty} \langle n | O_2 | H_i \rangle \big|$$

N. Christ, XF, G. Martinelli, C. Sachrajda, PRD 91 (2015) 11, 114510

Go for higher-order electroweak processes – challenges

Short-distance divergence in $O_1(x)O_2(0)$ when $x \to 0$

• With lattice spacing $a \to 0$, lattice cutoff effects $\sim O(a^{-2})$ or $O(\ln a^2)$ \Rightarrow No continuum limit!

Define renormalized bilocal operator

• Subtract $X(\mu_{RI}, a)O^{SD}$ to remove the lattice cutoff effects

Add the physical short-distance contribution from perturbation theory
 N. Christ, XF, A. Portelli, C. Sachrajda, PRD 93 (2016) 114517

- QCD+QED & pion mass splitting
 [XF, L. Jin, PRD100 (2019) 094509]

 [XF, L. Jin, M. Riberdy, arXiv:2108.05311]
- Rare kaon decays $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ [Z. Bai, XF, N. Christ, et.al. PRL118 (2017) 252001]
- Electroweak box contribution to $\pi_{\ell 3}$ and $K_{\ell 3}$ decay

[XF, M. Gorchtein, L. Jin, P. Ma, C. Seng, PRL124 (2020) 192002]
 [P. Ma, XF, M. Gorchtein, L. Jin, C. Seng, PRD103 (2021) 114503]

Neutrinoless double beta decays

[XF, L. Jin, X. Tuo, S. Xia, PRL122 (2019) 022001] [X. Tuo, XF, L. Jin, PRD100 (2019) 094511]

- QCD+QED & pion mass splitting
 [XF, L. Jin, PRD100 (2019) 094509]
 [XF, L. Jin, M. Riberdy, arXiv:2108.05311]
- Rare kaon decays $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ [Z. Bai, XF, N. Christ, et.al. PRL118 (2017) 252001]

• Electroweak box contribution to $\pi_{\ell 3}$ and $K_{\ell 3}$ decay

[XF, M. Gorchtein, L. Jin, P. Ma, C. Seng, PRL124 (2020) 192002] [P. Ma, XF, M. Gorchtein, L. Jin, C. Seng, PRD103 (2021) 114503]

Neutrinoless double beta decays

[XF, L. Jin, X. Tuo, S. Xia, PRL122 (2019) 022001] [X. Tuo, XF, L. Jin, PRD100 (2019) 094511]

Electroweak box diagram

First-row CKM unitarity

$$\Delta_{\rm CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = 0$$

PDG 2019 \Rightarrow PDG 2021

	PDG 2019	PDG 2021
$ V_{ud} $	0.97420(21)	0.97370(14)
$ V_{us} $	0.2243(5)	0.2245(8)
$ V_{ub} $	0.00394(36)	0.00382(24)
$\Delta_{ m CKM}$	-0.00061(47)	-0.00149(45)

- Main update from $|V_{ud}| \Rightarrow 3.3 \sigma$ deviation from CKM unitarity
- $|V_{ud}|$ is from superallowed $0^+
 ightarrow 0^+$ nuclear beta decay
 - Pure vector transitions at leading order
 - Uncertainty is dominated by electroweak radiative correction
 [J. Hardy, I. Towner, PRC 91 (2015) 025501]

Axial γW -box diagram

Based on current algebra, only axial γW -box diagram sensitive to hadronic scale

[A. Sirlin, Rev. Mod. Phys. 07 (1978) 573]

 $T_{\mu\nu}^{VA} = \frac{1}{2} \int d^4x \, e^{iqx} \langle H_f(p) | T \left[J_{\mu}^{em}(x) J_{\nu}^{W,A}(0) \right] | H_i(p) \rangle$

Re-evaluation of the γW -box diagram

 $> 3\sigma$ violation of CKM unitarity

 \Rightarrow first-principle calculation 22/31

Quark contractions for the γW -box diagrams

 $\mathcal{H}_{\mu\nu}^{V\!A}(x) = \langle \pi^0(p) | \mathcal{T} \left[J_{\mu}^{em}(x) J_{\nu}^{W,A}(0) \right] | \pi^-(p) \rangle$

- Coulomb gauge fixed wall source is used for the pion interpolating field
- $J_{\nu}^{W,A}(0)$ is treated as a source and $J_{\mu}^{em}(x)$ is a sink
- Calculate $\mathcal{H}_{\mu\nu}^{VA}(x)$ as a function of x

Lattice results for the hadronic functions

Construct the Lorentz scalar function $M_{\pi}(Q^2)$ from $\mathcal{H}_{\mu\nu}^{VA}(x)$

$$M_{\pi}(Q^2) = -rac{1}{6\sqrt{2}}rac{\sqrt{Q^2}}{m_{\pi}}\int d^4x\,\omega(Q,x)\epsilon_{\mu
ulpha0}x_{lpha}\mathcal{H}^{V\!A}_{\mu
u}(x)$$

Combine lattice results with pQCD

Radiative correction requires the momentum integral from $0 < Q^2 < \infty$

$$\Box_{\gamma W}^{VA} = \frac{3\alpha_e}{2\pi} \int \frac{dQ^2}{Q^2} \frac{m_W^2}{m_W^2 + Q^2} M_\pi(Q^2)$$

- Lattice data used for low- Q^2 region
- OPE and perturbative Wilson coefficients used for high- Q^2 region

Use the momentum scale Q^2_{cut} to separate the LD and SD contributions

 $\Box_{\gamma W}^{VA} = \begin{cases} 2.816(9)_{\rm stat}(24)_{\rm PT}(18)_{\rm a}(3)_{\rm FV} \times 10^{-3} & \text{using } Q_{\rm cut}^2 = 1 \ \text{GeV}^2 \\ 2.830(11)_{\rm stat}(9)_{\rm PT}(24)_{\rm a}(3)_{\rm FV} \times 10^{-3} & \text{using } Q_{\rm cut}^2 = 2 \ \text{GeV}^2 \\ 2.835(12)_{\rm stat}(5)_{\rm PT}(30)_{\rm a}(3)_{\rm FV} \times 10^{-3} & \text{using } Q_{\rm cut}^2 = 3 \ \text{GeV}^2 \end{cases}$

• When Q_{cut}^2 increase, the lattice artifacts become larger

• When $Q_{\rm cut}^2$ decrease, systematic effects in pQCD become larger

• For 1 GeV $^2 \leq Q_{
m cut}^2 \leq$ 3 GeV 2 , all results are consistent within uncertainties

Pion semileptonic β decay

Decay width measured by PIBETA experiment

$$\Gamma_{\pi\ell3} = \frac{G_F^2 |V_{ud}|^2 m_\pi^5 |f_+^{\pi}(0)|^2}{64\pi^3} (1+\delta) I_{\pi}$$

• ChPT [Cirigliano et.al. (2002), Czarnecki, Marciano, Sirlin (2019)]

 $\delta = 0.0334(10)_{\rm LEC}(3)_{\rm HO}$

• Sirlin's presentation [A. Sirlin, Rev. Mod. Phys. 07 (1978) 573]

$$\delta = \frac{\alpha_e}{2\pi} \left[\bar{g} + 3 \ln \frac{m_Z}{m_p} + \ln \frac{M_Z}{M_W} + \tilde{a}_g \right] + \delta_{\rm HO}^{\rm QED} + 2\Box_{\gamma W}^{\gamma A}$$
$$= 0.0332(1)_{\gamma W}(3)_{\rm HO}$$

where $\frac{\alpha_e}{2\pi}\bar{g} = 1.051 \times 10^{-2}$, $\frac{\alpha_e}{2\pi}\tilde{a}_g = -9.6 \times 10^{-5}$, $\delta_{\rm HO}^{\rm QED} = 0.0010(3)$

• Hadronic uncertainty reduced by a factor of 10, which results in

 $|V_{ud}| = 0.9739(28)_{exp}(5)_{th} \quad \Rightarrow \quad |V_{ud}| = 0.9739(28)_{exp}(1)_{th}$

[XF, Gorchtein, Jin, Ma, Seng, PRL124 (2020) 192002]

First time to calculate γW box diagram \Rightarrow method set up for nucleon decay

Move on to nucleon system

Puzzle of proton size

A decade puzzle since 2010

 Proton charge radius from μH spectroscopy differs from e-p scattering & H spectroscopy by 4%, ~5 σ deviation

- Measurements from μH spectroscopy is 10 times more accurate
- Dominant theoretical uncertainty from two-photon exchange diagram

Two-photon exchange contribution to μH Lamb shift

Preliminary results $m_{\pi} = 142 \text{ MeV}$

- To explain the puzzle, one needs $\Delta E_{\mathrm{TPE}} \sim 300~\mu\mathrm{eV}$
- Recommended phenomenological value: $\Delta E_{TPE} = 33.2(2.0) \ \mu eV$ [Science 339 (2013) 417. Ann. of Phy. 331 (2013), 127]
- Our lattice result: $\Delta E_{\text{TPE}} = 54.7(3.2) \ \mu\text{eV}$, statistical error only

Outlook

