Lattice QCD and high-intensity frontier

Xu Feng (冯旭)

The 7th China LHC Physics Workshop (CLHCP2021)

Frontiers in high energy physics

Discovery of Higgs boson \Rightarrow Nobel prize to Englert \& Higgs
\Rightarrow The final particle in the Standard Model is found!
Three frontiers to search for Physics Beyond Standard Model

- Cosmic frontier
\Rightarrow detect dark matter, energy and cosmically-produced new particles
- High-energy frontier
\Rightarrow increase collision energy, directly produce new particles
- High-intensity frontier
\Rightarrow precisely measure rare processes, look for discrepancies with SM

This requires the precise prediction from Standard Model
Short slab of cask: non-perturabtive QCD obstructs the predication

QCD: different strategies

QCD is the fundamental theory

\Rightarrow describing strong interaction between quarks and gluons

- High-Q ($>$ few GeV) \leftrightarrow short distance $(<0.1 \mathrm{fm})$
\Rightarrow Theory of weakly interacting quarks and gluons
\Rightarrow (Perturbative QCD: Gross, Politzer, Wilczek for asymptotic freedom)
- Low-Q $(\ll 1 \mathrm{GeV}) \leftrightarrow$ long distance $(>1 \mathrm{fm})$
\Rightarrow Spontaneous chiral symmetry breaking
\Rightarrow EFT of weakly interacting Nambu-Goldstone bosons
$\Rightarrow \mathrm{EFT}$ treats hadrons as dynamical degree of freedom (no quarks, gluons)
- Lattice QCD
\Rightarrow Large-scale supercomputer simulation on Euclidean spacetime lattice
- Provide most accurate α_{s} for PQCD
- Provide LECs for EFT

Application of LQCD: Muon g-2

Contributions from the Standard Model
$\mathrm{a}_{\mu}(\mathrm{SM})=\mathrm{a}_{\mu}(\mathrm{QED})+\mathrm{a}_{\mu}($ Weak $)+\mathrm{a}_{\mu}($ Hadronic $)$

QED

$116584718.9(1) \times 10^{-11} \quad 0.001 \mathrm{ppm}$

$$
153.6(1.0) \times 10^{-11} \quad 0.01 \mathrm{ppm}
$$

Hadronic...
...Vacuum Polarization (HVP)

$$
6845(40) \times 10^{-11}
$$

0.37 ppm
$\alpha^{2}{ }_{\mu}=\mu+\ldots$ [0.6\%]
...Light-by-Light (HLbL)

$$
92(18) \times 10^{-11}
$$

$$
0.15 \mathrm{ppm}
$$

Uncertainty dominated by hadronic contributions

Discrepancy between theory and experiment

Hadronic vacuum polarization contributions

"Our lattice result shows some tension with the R-ratio determinations of refs.3-6. Obviously, our findings should be confirmed - or refuted - by other studies using different discretizations of QCD. Those investigations are underway." - quoted from BMW's paper - Nature (2021)

Application of LQCD: Kaon decays and CP violation

[RBC-UKQCD, latest results, arXiv:2004.09440]

- $C P$ violation: $\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]$

$$
\begin{array}{ll}
\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]=21.7(2.6)_{\text {stat }}(8.0)_{\text {syst }} \times 10^{-4} & \text { Lattice } \\
\operatorname{Re}\left[\epsilon^{\prime} / \epsilon\right]=16.6(2.3) \times 10^{-4} & \text { Experiment }
\end{array}
$$

theoretical uncertainty $\sim 40 \%$, experimental uncertainty $\sim 14 \%$, theory consistent with experiment

Application of LQCD: Flavor physics

Evaluate the hadronic matrix elements for electroweak processes

- Lattice QCD is powerful for "standard" hadronic matrix elements with

- single local operator insertion
- only single stable hadron or vacuum in the initial/final state
- Requires only two- or three-point correlation functions

Precision era for lattice QCD

Flavor Lattice Averaging Group (FLAG) average 2021 [arXiv:2111.09849]

$$
\begin{aligned}
& f_{+}^{K \pi}(0)=0.9698(17) \quad \Rightarrow \quad 0.18 \% \text { error } \\
& f_{K^{ \pm}} / f_{\pi^{ \pm}}=1.1932(21) \quad \Rightarrow \quad 0.18 \% \text { error }
\end{aligned}
$$

Experimental information [arXiv:1411.5252, 1509.02220]

$$
\begin{aligned}
K_{\ell 3} & \Rightarrow\left|V_{u s}\right| f_{+}(0)=0.2165(4) \\
K_{\mu 2} / \pi_{\mu 2} & \Rightarrow\left|\frac{V_{u s}}{V_{u d}}\right| \frac{f_{K^{ \pm}}}{f_{\pi^{ \pm}}}=0.2760(4)
\end{aligned} \Rightarrow\left|\frac{V_{u s} \mid=0.2232(6)}{V_{u s}}\right|=0.2320(5)
$$

Flag average 2021

Error <1 \%

	N_{f}	FLAG average	Frac. Err.
f_{K} / f_{π}	$2+1+1$	$1.1932(21)$	0.18%
$f_{+}(0)$	$2+1+1$	$0.9698(17)$	0.18%
f_{D}	$2+1+1$	$212.0(7) \mathrm{MeV}$	0.33%
$f_{D_{s}}$	$2+1+1$	$249.9(5) \mathrm{MeV}$	0.20%
$f_{D_{s}} / f_{D}$	$2+1+1$	$1.1783(16)$	0.13%
$f_{+}^{D K}(0)$	$2+1+1$	$0.7385(44)$	0.60%
f_{B}	$2+1+1$	$190.0(1.3) \mathrm{MeV}$	0.68%
$f_{B_{s}}$	$2+1+1$	$230.3(1.3) \mathrm{MeV}$	0.56%
$f_{B_{s}} / f_{B}$	$2+1+1$	$1.209(5)$	0.41%

Error $<5 \%$

	N_{f}	FLAG average	Frac. Err.
\hat{B}_{K}	$2+1$	$0.7625(97)$	1.3%
$f_{+}^{D \pi}(0)$	$2+1$	$0.666(29)$	4.4%
$\hat{B}_{B_{s}}$	$2+1$	$1.35(6)$	4.4%
$B_{B_{s}} / B_{B_{d}}$	$2+1$	$1.032(28)$	3.7%

Time to go beyond leading-order electroweak transitions

Exploration at new frontiers

Go for higher-order electroweak processes - opportunities

Opportunities in flavor physics

- Rare decays, e.g. $\operatorname{Br}\left[K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right]=1.73_{-1.05}^{+1.15} \times 10^{-10}$

- Electroweak radative corrections to hadronic decays
\Rightarrow superallowed nuclear β decay half-life time with precision 10^{-6}

- Proton's weak charge $Q_{W}^{p}=1-4 \sin ^{2} \theta_{W}$
$\Rightarrow 0.3 \%$-precision measurement of $\sin ^{2} \theta_{W}$ by Q-weak at JLab
- Parity-violating e-p scattering, $\square_{\gamma Z}^{V}$ contribution

Go for higher-order electroweak processes - opportunities

Opportunities in nuclear physics

- Muonic hydrogen spectrum \rightarrow proton charge radius $r_{p}=0.84087$ (39) fm $\Rightarrow \quad 10$ times more accurate than e-p scattering

- Neutrinoless double beta decays

- Hadron electromagnetic polarizability

Go for higher-order electroweak processes - challenges

Computational demanding

- Three-point function

$$
\left\langle H_{f}\left(x_{f}\right) O(0) H_{i}^{\dagger}\left(x_{i}\right)\right\rangle \Rightarrow \int d^{3} \vec{x}_{i} \int d^{3} \vec{x}_{f} \Rightarrow \sum_{\vec{x}_{i}} \sum_{\vec{x}_{f}} \sim L^{6}
$$

- Four-point function
$\left.\left\langle H_{f}\left(x_{f}\right) O_{1}(x) O_{2}(0) H_{i}^{\dagger}\left(x_{i}\right)\right\rangle\right\rangle \Rightarrow \int d^{3} \vec{x}_{i} \int d^{3} \vec{x}_{f} \int d^{3} \vec{x} \Rightarrow \sum_{\vec{x}_{i}} \sum_{\vec{x}_{f}} \sum_{\vec{x}} \sim L^{9}$ with $L=24,32,48,64,96, \cdots$

Field sparsening technique

Y. Li, S. Xia, XF, L. Jin, C. Liu, PRD 103 (2021) 014514

Go for higher-order electroweak processes - challenges

Divergence due to intermediate multi-particle states

$$
\int d t\left\langle H_{f}\right| O_{1}(t) O_{2}(0)\left|H_{i}\right\rangle=\sum_{n} \frac{\left\langle H_{f}\right| O_{1}(0)|n\rangle\langle n| O_{2}(0)\left|H_{i}\right\rangle}{E_{n}-E_{i}}
$$

- In finite volume, state $|n\rangle$ is discrete \Rightarrow Divergence at $E_{n} \approx E_{i}$
- In infinite volume, summation \sum_{n} replaced by $\int d E \Rightarrow$ No divergence

Development of finite-volume correction formula

$$
\begin{aligned}
& \left.\Delta_{F V}=\frac{k}{16 \pi E} \cot (\phi+\delta)\left|\left\langle H_{f}\right| O_{1}(0)\right| n\right\rangle_{\infty}\langle n| O_{2}\left|H_{i}\right\rangle \mid \\
& \text { N. Christ, XF, G. Martinelli, C. Sachrajda, PRD } 91 \text { (2015) 11, } 114510
\end{aligned}
$$

Go for higher-order electroweak processes - challenges

Short-distance divergence in $O_{1}(x) O_{2}(0)$ when $x \rightarrow 0$

- With lattice spacing $a \rightarrow 0$, lattice cutoff effects $\sim O\left(a^{-2}\right)$ or $O\left(\ln a^{2}\right)$ $\Rightarrow \quad$ No continuum limit!

Define renormalized bilocal operator

- Subtract $X\left(\mu_{R I}, a\right) O^{\text {SD }}$ to remove the lattice cutoff effects
- Add the physical short-distance contribution from perturbation theory
N. Christ, XF, A. Portelli, C. Sachrajda, PRD 93 (2016) 114517

Our recent work on higer-order EW processes (meson sector)

- QCD+QED \& pion mass splitting [XF, L. Jin, PRD100 (2019) 094509]
[XF, L. Jin, M. Riberdy, arXiv:2108.05311]
- Rare kaon decays $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$
[Z. Bai, XF, N. Christ, et.al. PRL118 (2017) 252001]
- Electroweak box contribution to $\pi_{\ell 3}$ and $K_{\ell 3}$ decay

$$
\begin{aligned}
& \text { [XF, M. Gorchtein, L. Jin, P. Ma, C. Seng, PRL124 (2020) 192002] } \\
& \text { [P. Ma, XF, M. Gorchtein, L. Jin, C. Seng, PRD103 (2021) 114503] }
\end{aligned}
$$

- Neutrinoless double beta decays

$$
\begin{array}{r}
{[X F, \text { L. Jin, X. Tuo, S. Xia, PRL122 (2019) 022001] }} \\
{[\text { X. Tuo, XF, L. Jin, PRD100 (2019) 094511] }}
\end{array}
$$

Our recent work on higer-order EW processes (meson sector)

- QCD+QED \& pion mass splitting
[XF, L. Jin, PRD100 (2019) 094509]
[XF, L. Jin, M. Riberdy, arXiv:2108.05311]
- Rare kaon decays $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$
[Z. Bai, XF, N. Christ, et.al. PRL118 (2017) 252001]
- Electroweak box contribution to $\pi_{\ell 3}$ and $K_{\ell 3}$ decay

```
[XF, M. Gorchtein, L. Jin, P. Ma, C. Seng, PRL124 (2020) 192002]
[P. Ma, XF, M. Gorchtein, L. Jin, C. Seng, PRD103 (2021) 114503]
```

- Neutrinoless double beta decays

$$
\begin{aligned}
& \text { [XF, L. Jin, X. Tuo, S. Xia, PRL122 (2019) 022001] } \\
& \text { [X. Tuo, XF, L. Jin, PRD100 (2019) 094511] }
\end{aligned}
$$

Electroweak box diagram

CKM unitarity - a constraint from Standard Model

First-row CKM unitarity

$$
\Delta_{\mathrm{CKM}}=\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1=0
$$

PDG $2019 \Rightarrow$ PDG 2021

	PDG 2019	PDG 2021
$\left\|V_{u d}\right\|$	$0.97420(21)$	$0.97370(14)$
$\left\|V_{u s}\right\|$	$0.2243(5)$	$0.2245(8)$
$\left\|V_{u b}\right\|$	$0.00394(36)$	$0.00382(24)$
Δ_{CKM}	$-0.00061(47)$	$-0.00149(45)$

- Main update from $\left|V_{u d}\right| \Rightarrow 3.3 \sigma$ deviation from CKM unitarity
- $\left|V_{u d}\right|$ is from superallowed $0^{+} \rightarrow 0^{+}$nuclear beta decay
- Pure vector transitions at leading order
- Uncertainty is dominated by electroweak radiative correction

Axial γW-box diagram

Based on current algebra, only axial γW-box diagram sensitive to hadronic scale [A. Sirlin, Rev. Mod. Phys. 07 (1978) 573]

$T_{\mu \nu}^{V A}=\frac{1}{2} \int d^{4} x e^{i q x}\left\langle H_{f}(p)\right| T\left[J_{\mu}^{e m}(x) J_{\nu}^{W, A}(0)\right]\left|H_{i}(p)\right\rangle$
Re-evaluation of the γW-box diagram

$$
\begin{gathered}
\left|V_{u d}\right|=0.97420(18)_{\mathrm{RC}}(10)_{\mathcal{F} t} \\
\text { Using VMD model } \\
\text { [Marciano \& Sirlin, PRL 2006] } \\
\Downarrow \\
\left|V_{u d}\right|=0.97370(10)_{\mathrm{RC}}(10)_{\mathcal{F} t}
\end{gathered}
$$

Using dispsive \& data-driven analysis [Seng et.al. PRL 2018]
$>3 \sigma$ violation of CKM unitarity \Rightarrow first-principle calculation

Quark contractions for the γW-box diagrams

$$
\mathcal{H}_{\mu \nu}^{V A}(x)=\left\langle\pi^{0}(p)\right| T\left[J_{\mu}^{e m}(x) J_{\nu}^{W, A}(0)\right]\left|\pi^{-}(p)\right\rangle
$$

(A)

(C)

(D)

- Coulomb gauge fixed wall source is used for the pion interpolating field
- $J_{\nu}^{W, A}(0)$ is treated as a source and $J_{\mu}^{e m}(x)$ is a sink
- Calculate $\mathcal{H}_{\mu \nu}^{V A}(x)$ as a function of x

Lattice results for the hadronic functions

Construct the Lorentz scalar function $M_{\pi}\left(Q^{2}\right)$ from $\mathcal{H}_{\mu \nu}^{V A}(x)$

$$
M_{\pi}\left(Q^{2}\right)=-\frac{1}{6 \sqrt{2}} \frac{\sqrt{Q^{2}}}{m_{\pi}} \int d^{4} x \omega(Q, x) \epsilon_{\mu \nu \alpha 0} x_{\alpha} \mathcal{H}_{\mu \nu}^{V A}(x)
$$

Combine lattice results with pQCD

Radiative correction requires the momentum integral from $0<Q^{2}<\infty$

$$
\square_{\gamma W}^{V A}=\frac{3 \alpha_{e}}{2 \pi} \int \frac{d Q^{2}}{Q^{2}} \frac{m_{W}^{2}}{m_{W}^{2}+Q^{2}} M_{\pi}\left(Q^{2}\right)
$$

- Lattice data used for low- Q^{2} region
- OPE and perturbative Wilson coefficients used for high- Q^{2} region

Use the momentum scale $Q_{\text {cut }}^{2}$ to separate the LD and SD contributions

$$
\square_{\gamma W}^{V A}= \begin{cases}2.816(9)_{\text {stat }}(24)_{\mathrm{PT}}(18)_{\mathrm{a}}(3)_{\mathrm{FV}} \times 10^{-3} & \text { using } Q_{\text {cut }}^{2}=1 \mathrm{GeV}^{2} \\ 2.830(11)_{\mathrm{stat}}(9)_{\mathrm{PT}}(24)_{\mathrm{a}}(3)_{\mathrm{FV}} \times 10^{-3} & \text { using } Q_{\text {cut }}^{2}=2 \mathrm{GeV}^{2} \\ 2.835(12)_{\text {stat }}(5)_{\mathrm{PT}}(30)_{\mathrm{a}}(3)_{\mathrm{FV}} \times 10^{-3} & \text { using } Q_{\text {cut }}^{2}=3 \mathrm{GeV}^{2}\end{cases}
$$

- When $Q_{\text {cut }}^{2}$ increase, the lattice artifacts become larger
- When $Q_{\text {cut }}^{2}$ decrease, systematic effects in PQCD become larger
- For $1 \mathrm{GeV}^{2} \leq Q_{\text {cut }}^{2} \leq 3 \mathrm{GeV}^{2}$, all results are consistent within uncertainties

Pion semileptonic β decay

Decay width measured by PIBETA experiment

$$
\Gamma_{\pi \ell 3}=\frac{G_{F}^{2}\left|V_{u d}\right|^{2} m_{\pi}^{5}\left|f_{+}^{\pi}(0)\right|^{2}}{64 \pi^{3}}(1+\delta) I_{\pi}
$$

- ChPT [Cirigliano et.al. (2002), Czarnecki, Marciano, Sirlin (2019)]

$$
\delta=0.0334(10)_{\mathrm{LEC}}(3)_{\mathrm{HO}}
$$

- Sirlin's presentation [A. Sirlin, Rev. Mod. Phys. 07 (1978) 573]

$$
\begin{aligned}
\delta & =\frac{\alpha_{e}}{2 \pi}\left[\bar{g}+3 \ln \frac{m_{z}}{m_{p}}+\ln \frac{M_{z}}{M_{W}}+\tilde{a}_{g}\right]+\delta_{\mathrm{HO}}^{\mathrm{QED}}+2 \square_{\gamma W}^{V A} \\
& =0.0332(1)_{\gamma W}(3)_{\mathrm{HO}}
\end{aligned}
$$

where $\frac{\alpha_{e}}{2 \pi} \bar{g}=1.051 \times 10^{-2}, \frac{\alpha_{e}}{2 \pi} \tilde{a}_{g}=-9.6 \times 10^{-5}, \delta_{\mathrm{HO}}^{\mathrm{QED}}=0.0010(3)$

- Hadronic uncertainty reduced by a factor of 10 , which results in

$$
\begin{array}{r}
\left|V_{u d}\right|=0.9739(28)_{\exp }(5)_{\mathrm{th}} \\
{[\mathrm{XF}, \text { Gorchtein, Jin, Ma, Seng, PRL124 (2020) 192002] }}
\end{array}
$$

First time to calculate γW box diagram \Rightarrow method set up for nucleon decay

Puzzle of proton size

A decade puzzle since 2010

- Proton charge radius from $\mu \mathrm{H}$ spectroscopy differs from e-p scattering \& H spectroscopy by $4 \%, \sim 5 \sigma$ deviation

nature

- Measurements from $\mu \mathrm{H}$ spectroscopy is 10 times more accurate
- Dominant theoretical uncertainty from two-photon exchange diagram

Two-photon exchange contribution to μH Lamb shift

Preliminary results © $m_{\pi}=142 \mathrm{MeV}$

- To explain the puzzle, one needs $\Delta E_{\text {TPE }} \sim 300 \mu \mathrm{eV}$
- Recommended phenomenological value: $\Delta E_{\text {TPE }}=33.2(2.0) \mu \mathrm{eV}$ [Science 339 (2013) 417. Ann. of Phy. 331 (2013), 127]
- Our lattice result: $\Delta E_{\mathrm{TPE}}=54.7(3.2) \mu \mathrm{eV}$, statistical error only
it

