# Search for direct electroweakino production in events with at least two hadronic taus with the ATLAS detector

Yuchen Cai (IHEP) 2021/11/28 CLHCP (2021)





中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

### It is about SUSY...



- The Standard Model (SM) of particle physics Precisely described the fundamental elements of the matter and the interactions between them
- Despite the huge success of the SM theory, BSM is strongly motivated:
  - <u>Hierarchy problem, dark matter, the GUT</u>, quantum description of gravity, muon g-2, e.t.c...





■ <u>SUSY</u>...

• The exclusion limit...

squark & gluino is above 2 TeV

light gauginos & stau can be lighter

 Electroweak Direct Production to 2 two hadronic taus under R-parity Conserving

## Outline

Glance Analysis entry: <u>ANA-SUSY-2019-17</u>

#### **Naming**:

- Lightest chargino  $(\tilde{\chi}_1^{\pm})$ : C1
- Lightest neutralino ( $\tilde{\chi}_1^0$ ): N1
- Next-to-lightest neutralino( $\tilde{\chi}_2^0$ ):N2

#### **C1C1, C1N2 via stau with** $\geq 2\tau + E_T^{miss}$

- Previous paper with 2015-2016 data : Eur. Phys. J. C 78, 154 (2018)
  - OS final state: Re-optimize based on full Run-2 data
  - SS final state: **New final state** for C1N2 production
- A new **OS-SS combine** result is also included

#### **C1N2 via Wh with** $\geq 2\tau + 1lep + E_T^{miss}$

• New final state study for C1N2 via Wh







### **Gaugino pair – OS channel**

#### **SR optimization**: **cut-based** search algorithm

- The kinematic distributions of **C1C1** and **C1N2** are different
- The kinematic distributions of **tau** and **MET** are different for different SUSY particle mass & mass spliting.





5

#### • LM and HM are split by MET.



### **Gaugino pair – OS channel – BKG estimation**



## **Gaugino pair – SS channel**

■ Gaugino pair Direct Production! **Only C1N2** has SS channel

#### **SR optimization**: **cut-based** search algorithm

• Also split by MET for different SUSY particle mass splitting







### **Gaugino pair – SS channel – BKG estimation**

| <b>CR</b> – <b>A</b> (lowMass-SS)                                                                                                                                                     | SR – C1N2SS – LM                                                                                                             | CR – A (highMass-SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SR - C1N2SS - HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\geq 2 \text{ very loose or loose } \tau s$<br>< 2 medium $\tau s$                                                                                                                   | $\geq$ 2 medium $\tau$ s (SS)                                                                                                | $\geq$ 2 very loose or loose $\tau$ s<br>< 2 medium $\tau$ s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\geq 2 \text{ medium } \tau s \text{ (SS)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $m_{Tsum} \ge 200 \text{ GeV}$<br>$\Delta \Phi(\tau_1, \tau_2) \ge 1.5$                                                                                                               | $m_{Tsum} \ge 200 \text{ GeV}$<br>$\Delta \Phi(\tau_1, \tau_2) \ge 1.5$                                                      | $m_{T sum} \ge 450 \text{ GeV}$<br>$E_T^{\text{miss}} \ge 50 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $m_{T sum} \ge 450 \text{ GeV}$<br>$E_T^{\text{miss}} \ge 150 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathbf{VR} - \mathbf{E}$ (lowMass-SS)                                                                                                                                               | $\mathbf{VR} - \mathbf{F}$ (lowMass-SS)                                                                                      | VR – E (highMass-SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VR – F (highMass-SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\geq 2 \text{ very loose or loose } \tau s$ $< 2 \text{ medium } \tau s$ $m_{T sum} \in [100, 200] \text{ GeV}$                                                                      | $\geq 2 \text{ medium } \tau \text{s (SS)}$ $m_{T \text{ sum}} \in [100, 200] \text{ GeV}$                                   | $ \geq 2 \text{ very loose or loose } \tau s  < 2 \text{ medium } \tau s  m_{Tsum} \in [200, 450] \text{ GeV} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\geq 2 \text{ medium } \tau \text{s (SS)}$ $- m_{T sum} \in [200, 450] \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{\Delta \Psi(\tau_1, \tau_2) \leq 1.5}{\mathbf{CR} - \mathbf{B} \text{ (lowMass-SS)}}$                                                                                          | $\frac{\Delta \Psi(\tau_1, \tau_2) \leq 1.5}{\mathbf{CR} - \mathbf{C} \text{ (lowMass-SS)}}$                                 | $\frac{E_T^{\text{mass}} \ge 50 \text{ GeV}}{(\mathbf{CR} - \mathbf{R} \text{ (highMass-SS)})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $E_T^{\text{mass}} \ge 50 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\geq 2 \text{ very loss or loss } \tau s$ $\geq 2 \text{ very loss or loss } \tau s$ $< 2 \text{ medium } \tau s$ $m_{Tsum} < 100 \text{ GeV}$ $\Delta \Phi(\tau_1, \tau_2) \le 1.5$ | $\geq 2 \text{ medium } \tau \text{s (SS)}$ $= \frac{-}{m_{T sum} < 100 \text{ GeV}}$ $\Delta \Phi(\tau_1, \tau_2) \leq 1.5$ | $\frac{\mathbf{C}\mathbf{K} - \mathbf{B} \text{ (lightNass-SS)}}{\geq 2 \text{ very loose or loose } \tau \text{s}}$ $< 2 \text{ medium } \tau \text{s}$ $m_{T sum} \in [100, 200] \text{ GeV}$ $E_T^{\text{miss}} \geq 50 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\geq 2 \text{ medium } \tau \text{s} \text{ (SS)}$ $= \frac{1}{m_{T sum} \in [100, 200] \text{ GeV}}$ $E_T^{\text{miss}} \geq 50 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{10^{2}}{10^{10}}$                                                                                                                                                              | 200 250 300 350 400<br>Mass-SS <sup>T</sup> [GeV]                                                                            | Definition of the second secon | https://www.interview.org/lines/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/files/file |

Multijet estimation: ABCD method

■ W+jets and Top : dedicate Control Region & Validation Region



## **Gaugino pair – Results**

#### Still Blinded!

- Grey: 36 ifb results
- Green: C1C1
- Purple: C1N2-SS
- **Blue:** C1N2-OS
- C1N2 SS-OS statistical combination. SS-channel has a contribution of 50 GeV improvement.
- C1C1-C1N2 yields combination: Merge C1C1 & C1N2 samples, use C1N2 SR definition. C1C1-channel contributes a lot.



### C1N2 via Wh with 1-lep 2-tau final state



#### New channel for C1N2 via Wh: make contribution in EWK-combination

#### **SR definition**: **cut-based** search algorithm

#### • Two SRs are defined to cover low (high) gaugino.



#### • They are not orthogonal!



## Wh – BKG estimation



Fake

SR-highMass-Wh

### Wh – Results



#### Still Blinded!

We can see the two SRs are targeting @ different Region clearly.

LM & HM are combined by choosing best.

### Summary



• C1C1, C1N2 via stau with  $\geq 2\tau + E_T^{miss}$ 



• C1N2 via Wh with  $\geq 2\tau + 1lep + E_T^{miss}$ 



- We have search for the Direct Gaugino pair production via stau decay or Wh decay for at least two tau final state...
  - Preliminary results shows: Exclusion limit has improved a lot comparing to 36 ifb.
  - New final state will contribute in EWK combination (*Combined search for electroweakinos*)

Outlook:

- Unblinding
- Paper publication in next year

Backups

### **CMS Results**

| Table 1: Brief description of | of the categories used to | o classify events in the search. |
|-------------------------------|---------------------------|----------------------------------|
|-------------------------------|---------------------------|----------------------------------|

| Category | Requirements                                                                         |
|----------|--------------------------------------------------------------------------------------|
| 21SS     | Two light leptons with the same charge                                               |
| 3lA      | Three light leptons with at least an OSSF pair                                       |
| 31B      | Three light leptons with no OSSF pair                                                |
| 31C      | A pair of light leptons forming an OSSF pair and a $\tau_{\rm h}$                    |
| 3lD      | A pair of light leptons of different flavor and opposite charge and a $\tau_{\rm h}$ |
| 3lE      | A pair of light leptons of same charge and a $\tau_{\rm h}$                          |
| 3lF      | A light lepton and two $\tau_{\rm h}$                                                |
| 4lG      | Four light leptons with two OSSF pairs                                               |
| 4lH      | Four light leptons with less than two OSSF pairs                                     |
| 41I      | Three light leptons and a hadronically decaying tau                                  |
| 4lJ      | Two light leptons and two hadronically decaying taus, two OSSF pairs                 |
| 4lK      | Two light leptons and two hadronically decaying taus; one or zero OSSF pairs         |
|          |                                                                                      |

• They have the splitting x= 0.05 and 0.95.

### Definitions

Object

| Cut        | Selection                                              |  |  |  |
|------------|--------------------------------------------------------|--|--|--|
|            | Signal Tau                                             |  |  |  |
| Acceptance | $p_{\rm T}$ > 20.0 GeV , $ \eta $ < 2.5 and crack veto |  |  |  |
| AbsCharge  | 1                                                      |  |  |  |
| NTracks    | 1 or 3                                                 |  |  |  |
| EleBDTWP   | ELEIDBDTMEDIUM                                         |  |  |  |
| JetIDWP    | JETIDRNNMEDIUM                                         |  |  |  |
| Quality    |                                                        |  |  |  |
| IP         | $\Delta z_0 sin(\theta) < 0.5 mm$                      |  |  |  |
|            |                                                        |  |  |  |

| Cut             | Selection                                            |  |  |
|-----------------|------------------------------------------------------|--|--|
|                 | Baseline Electron                                    |  |  |
| Acceptance      | $p_{\rm T} > 4.5 \; {\rm GeV} \; , \;  \eta  < 2.47$ |  |  |
| Quality         | LooseAndBLayerLLH                                    |  |  |
| IP              | $\Delta z_0 sin(\theta) < 0.5 mm$                    |  |  |
| Signal Electron |                                                      |  |  |
| Acceptance      | $p_{\rm T} > 25 { m ~GeV}$ , $ \eta  < 2.47$         |  |  |
| Quality         | TightLLH                                             |  |  |
| Isolation       | FCLoose (< 200 GeV), FCHighPtCaloOnly (>200 GeV)     |  |  |
| IP              | $d_0/\sigma(d_0) < 5$                                |  |  |

| Cut        | Selection                                      |  |  |
|------------|------------------------------------------------|--|--|
| E          | Baseline Muon                                  |  |  |
| Acceptance | $p_{\rm T} > 3.0 \text{ GeV}$ , $ \eta  < 2.7$ |  |  |
| Quality    | Medium                                         |  |  |
| IP         | $\Delta z_0 sin(\theta) < 0.5 mm$              |  |  |
|            | Signal Muon                                    |  |  |
| Acceptance | $p_{\rm T} > 25 \text{ GeV}$ , $ \eta  < 2.7$  |  |  |
| Quality    | Medium                                         |  |  |
| Isolation  | Loose_VarRad                                   |  |  |
| IP         | $d_0/\sigma(d_0) < 3$                          |  |  |

| Cut                    | Selection                                         |  |  |
|------------------------|---------------------------------------------------|--|--|
|                        | Signal Jet                                        |  |  |
| Acceptance             | $p_{\rm T}$ > 20.0 GeV , $ \eta  < 2.8$           |  |  |
| Туре                   | PFlow                                             |  |  |
| Uncertainty            | Full JER                                          |  |  |
| <b>JetVertexTagger</b> | Default (Tight)                                   |  |  |
|                        | for $p_{\rm T} < 60.0 {\rm GeV}$ , $ \eta  < 2.5$ |  |  |
|                        | b tag                                             |  |  |
| Acceptance             | $p_{\rm T}$ > 20.0 GeV , $ \eta  < 2.8$           |  |  |
| Algorithm              | DL1r FixedCutBEff@77%                             |  |  |
| TimeStamp              | 201903                                            |  |  |

#### Trigger

| • | Trigger                          | Trigger leg                            | Trigger leg Year |         | HL  | Γ   | Offline            |       |                               |
|---|----------------------------------|----------------------------------------|------------------|---------|-----|-----|--------------------|-------|-------------------------------|
|   |                                  | leading tau $p_{\rm T}$ [GeV] 2015-201 |                  | 5-2017  | 35  |     | 50                 |       |                               |
|   |                                  |                                        |                  | 2018    | 60  |     | 75                 |       |                               |
|   | $di$ -tau + $E_T^{miss}$ trigger | 2nd leading tau $p_{\rm T}$ [GeV] 201  |                  | 5-2018  | 25  |     | 40                 |       |                               |
|   |                                  | $E_{\rm T}^{\rm miss}$ [GeV]           | 201              | 5-2018  | 50  |     | 150                |       |                               |
|   | asymmetric di-tau trigg          | er leading tau $p_{\rm T}$ [GeV]       | 201              | 5-2018  | 80  |     | 95                 |       |                               |
|   |                                  | 2nd leading tau $p_{\rm T}$ [GeV]      | 201              | 5-2017  | 50  |     | 60                 |       |                               |
|   |                                  |                                        | ,                | 2018    | 60  |     | 75                 |       |                               |
| • | Trigger                          | Trigger name                           |                  | Year    | •   | Н   | LT $p_{\rm T}$ cut | [GeV] | Offline $p_{\rm T}$ cut [GeV] |
|   |                                  | HLT_e24_lhmedium_L1EM20                | VH               | 2015    | ;   |     | 24                 |       | 25                            |
|   |                                  | HLT_e60_lhmedium                       |                  | 2015    | ;   |     | 60                 |       | 61                            |
|   |                                  | HLT_e120_lhloose                       |                  | 2015    | ;   | 120 |                    |       | 121                           |
|   | single electron trigger          | HLT_e26_lhtight_nod0_ivarlo            | ose              | 2016-20 | 018 |     | 26                 |       | 27                            |
|   |                                  | HLT_e60_lhmedium_nod0                  |                  | 2016-20 | 018 |     | 60                 |       | 61                            |
|   |                                  | HLT_e140_lhloose_nod0                  |                  | 2016-20 | 018 |     | 140                |       | 141                           |
|   |                                  | HLT_mu20_iloose_L1MU15                 | 5                | 2015    | i   |     | 20                 |       | 21                            |
|   | single muon trigger              | HLT_mu26_ivarmedium                    |                  | 2016-20 | 018 |     | 26                 |       | 27.3                          |
|   |                                  | HLT_mu50                               |                  | 2015-20 | 018 |     | 50                 |       | 52.5                          |

### **C1N2OS**

#### C1N2OS

| SM process            | SR-C1C1-LM       | SR-C1N2OS-LM     | SR-C1C1-HM        | SR-C1N2OS-HM     |
|-----------------------|------------------|------------------|-------------------|------------------|
| Тор                   | $0.95 \pm 0.38$  | $1.08 \pm 0.40$  | $0.36 \pm 0.22$   | $0.36 \pm 0.22$  |
| W+jets                | $0.43 \pm 0.50$  | $0.62 \pm 1.18$  | $0.30 \pm 0.17$   | $0.30 \pm 0.17$  |
| Z+jets                | $1.42 \pm 0.51$  | $2.46 \pm 1.43$  | $0.78 \pm 0.56$   | $0.86 \pm 0.56$  |
| Multi-boson           | $1.65 \pm 0.36$  | $3.18 \pm 0.47$  | $2.19 \pm 0.42$   | $2.43 \pm 0.44$  |
| Higgs                 | $0.27 \pm 0.26$  | $0.39 \pm 0.27$  | $0.011 \pm 0.003$ | $0.73 \pm 0.72$  |
| Multi-jet             | $1.86 \pm 0.19$  | $4.51 \pm 0.29$  | $0.77 \pm 0.20$   | $0.72 \pm 0.19$  |
| SM total              | $6.58 \pm 0.95$  | $12.24 \pm 2.00$ | $4.41 \pm 0.78$   | $5.40 \pm 1.07$  |
| Ref. point (300, 150) | $10.81 \pm 1.56$ | $12.53 \pm 1.67$ | $6.74 \pm 1.33$   | $10.68 \pm 1.74$ |
| Ref. point (750, 450) | $2.65 \pm 0.21$  | $4.40 \pm 0.31$  | $6.77 \pm 0.35$   | $12.16 \pm 0.53$ |



|                                          |                                             | 1                                            |  |
|------------------------------------------|---------------------------------------------|----------------------------------------------|--|
| variables                                | cut values of low $E_{\rm T}^{\rm miss}$ SR | cut values of high $E_{\rm T}^{\rm miss}$ SR |  |
| tau quality                              | >= 2 medium taus, 1 med                     | ium 1 tight taus, 2 tight taus               |  |
| $E_T^{miss} \ge$                         | 30, 50, 60, 75, 80, 90, 100 GeV             | 150, 160, 170, 180, 200 GeV                  |  |
| $m_{T2} \ge$                             | 40, 50, 60, 70,                             | 80, 90, 100 GeV                              |  |
| $m_{Tsum} \ge$                           | 200, 250, 300, 350, 400, 450, 500,550 GeV   |                                              |  |
| $\Delta \mathbf{R}(\tau_1, \tau_2) \leq$ | 2.4, 2.6, 2.8, 3.0, 3.2, 6                  |                                              |  |
| $ \Delta \phi(\tau_1, \tau_2)  \ge  $    | 0.4, 0.5, 0.6, 0.8, 1, 1.2, 1.4             |                                              |  |
| $m(\tau_1, \tau_2) \geq$                 | 120, 130, 140, 150 GeV                      |                                              |  |
| $p_{T}(\tau_{1}) \geq$                   | 95, 100, 110, 120, 130, 140, 150 GeV        | 50, 55, 60, 65, 70, 80, 90, 100, 120 GeV     |  |
| $p_T(\tau_2) \ge$                        | 60, 70, 80, 90, 100 GeV                     | 40, 45, 50, 55, 60, 70, 80, 90, 100 GeV      |  |

### **C1N2OS**

#### MultiJet

| <b>CR</b> – <b>A</b> (C1C1-LM)                   | SR - C1C1 - LM                                                       | <b>CR</b> – <b>A</b> (C1N2OS-LM)                | SR - C1N2OS - LM                             |
|--------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| $\geq$ 2 very loose $\tau$ s                     | == 2 Medium $\geq$ 1 tight $\tau$ s (OS)                             | $\geq$ 2 very loose $\tau$ s                    | $\geq$ 2 Medium >= 1 tight $\tau$ s (OS)     |
| $60 < E_{\mathrm{T}}^{\mathrm{miss}} < 150  GeV$ | $< 150 \ GeV$   $60 < E_{\rm T}^{\rm miss} < 150 \ GeV$   $60 < $    |                                                 | $60 < E_{\rm T}^{\rm miss} < 150 ~GeV$       |
| $m_{\rm T2}^{1} > 80 {\rm GeV}$                  | $m_{\rm T2}^2 > 80 {\rm GeV}$                                        | $m_{Tsum} > 70 \text{ GeV}$                     | $m_{T2max} > 70 \text{ GeV}$                 |
| <b>VR</b> – <b>E</b> (C1C1-LM)                   | <b>VR – F</b> (C1C1-LM)                                              | <b>VR</b> – <b>E</b> (C1N2OS-LM)                | VR - F (C1N2OS-LM)                           |
| $\geq 2$ very loose $\tau$ s                     | $= 2 \text{ Medium} \ge 1 \text{ tight } \tau \text{ s} (\text{OS})$ | $\geq 2$ very loose $\tau$ s                    | $\geq$ 2 Medium $\geq$ 1 tight $\tau$ s (OS) |
| $10 < E_{\rm T}^{\rm miss} < 150 \ GeV$          | $10 < E_{\rm T}^{\rm miss} < 150  GeV$                               | $10 < E_{\rm T}^{\rm miss} < 150  GeV$          | $10 < E_{\rm T}^{\rm miss} < 150 \ GeV$      |
| $35 < m_{T2} < 80 \text{ GeV}$                   | $35 < m_{T2} < 80 \text{ GeV}$                                       | $35 < m_{T2max}^{1} < 70 \text{ GeV}$           | $35 < m_{T2max}^2 < 70 \text{ GeV}$          |
| <b>CR – B</b> (C1C1-LM)                          | $\mathbf{CR} - \mathbf{C}$ (C1C1-LM)                                 | <b>CR</b> – <b>B</b> (C1N2OS-LM)                | $\mathbf{CR} - \mathbf{C}$ (C1N2OS-LM)       |
| $\geq$ 2 very loose $\tau$ s                     | == 2 Medium $\geq$ 1 tight $\tau$ s (OS)                             | $\geq$ 2 very loose $\tau$ s                    | $\geq$ 2 Medium $\geq$ 1 tight $\tau$ s (OS) |
| $10 < E_{\rm T}^{\rm miss} < 150 ~GeV$           | $10 < E_{\mathrm{T}}^{\mathrm{miss}} < 150  GeV$                     | $10 < E_{\rm T}^{\rm miss} < 150  GeV$          | $10 < E_{\rm T}^{\rm miss} < 150 ~GeV$       |
| $15 < m_{T2} < 35 \text{ GeV}$                   | $15 < m_{T2} < 35 \text{ GeV}$                                       | $15 < m_{T2max} < 35 \text{ GeV}$               | $15 < m_{T2max} < 35 \text{ GeV}$            |
|                                                  |                                                                      |                                                 |                                              |
| <b>CR – A</b> (C1C1-HM)                          | SR - C1C1 - HM                                                       | CR – A (C1N2OS-HM)                              | SR - C1N2OS - HM                             |
| $\geq$ 2 very loose $\tau$ s                     | $== 2 \text{ medium } \tau s (OS)$                                   | $\geq 2$ very loose $\tau$ s                    | $\geq$ 2 medium $\tau$ s (OS)                |
| $< 1 \text{ medium } \tau s (OS)$                |                                                                      | $< 1 \text{ medium } \tau s (OS)$               |                                              |
| $E_{\rm T}^{\rm miss} > 150  GeV$                | $E_{\rm T}^{\rm miss} > 150  GeV$                                    | $E_{\rm T}^{\rm miss} > 150 \; GeV$             | $E_{\rm T}^{\rm miss} > 150  GeV$            |
| $m_{Tsum} > 400 \text{ GeV}$                     | $m_{Tsum} > 400 \text{ GeV}$                                         | $m_{Tsum} > 400 \text{ GeV}$                    | $m_{Tsum} > 400 \text{ GeV}$                 |
| $m_{\rm T2} > 85  {\rm GeV}$                     | $m_{\rm T2} > 85  {\rm GeV}$                                         | $m_{T2max} > 85 \text{ GeV}$                    | $m_{T2max} > 85 \text{ GeV}$                 |
| <b>VR – E</b> (C1C1-HM)                          | $\mathbf{VR} - \mathbf{F}$ (C1C1-HM)                                 | $\mathbf{VR} - \mathbf{E}$ (C1N2OS-HM)          | VR - F (C1N2OS-HM)                           |
| $\geq 2$ very loose $\tau$ s                     | $== 2 \text{ medium } \tau s (OS)$                                   | $\geq 2$ very loose $\tau$ s                    | $\geq$ 2 medium $\tau$ s (OS)                |
| $< 1 \text{ medium } \tau s (OS)$                | -                                                                    | $< 1 \text{ medium } \tau \text{s} (\text{OS})$ | -                                            |
| $E_{\rm T}^{\rm miss}$ > 50 GeV                  | $E_{\rm T}^{\rm miss}$ > 50 GeV                                      | $E_{\rm T}^{\rm miss}$ > 50 GeV                 | $E_{\rm T}^{\rm miss}$ > 50 GeV              |
| $200 < m_{Tsum} < 400 \text{ GeV}$               | $200 < m_{Tsum} < 400 \text{ GeV}$                                   | $200 < m_{Tsum} < 400 \text{ GeV}$              | $200 < m_{Tsum} < 400 \text{ GeV}$           |
| $60 < m_{\rm T2} < 85  {\rm GeV}$                | $60 < m_{\rm T2} < 85 {\rm GeV}$                                     | $60 < m_{T2max} < 85 \text{ GeV}$               | $60 < m_{T2max} < 85 \text{ GeV}$            |
| <b>CR – B</b> (C1C1-HM)                          | $\mathbf{CR} - \mathbf{C}$ (C1C1-HM)                                 | $\mathbf{CR} - \mathbf{B}$ (C1N2OS-HM)          | $\mathbf{CR} - \mathbf{C}$ (C1N2OS-HM)       |
| $\geq$ 2 very loose $\tau$ s                     | $== 2 \text{ medium } \tau s (OS)$                                   | $\geq 2$ very loose $\tau$ s                    | $\geq$ 2 medium $\tau$ s (OS)                |
| $< 1 \text{ medium } \tau s (OS)$                | -                                                                    | $< 1 \text{ medium } \tau s (OS)$               | -                                            |
| $E_{\rm T}^{\rm miss}$ > 50 GeV                  | $E_{\rm T}^{\rm miss}$ > 50 GeV                                      | $E_{\rm T}^{\rm miss}$ > 50 GeV                 | $E_{\rm T}^{\rm miss}$ > 50 GeV              |
| $100 < m_{Tsum} < 300 \text{ GeV}$               | $100 < m_{Tsum} < 300 \text{ GeV}$                                   | $150 < m_{Tsum} < 300 \text{ GeV}$              | $150 < m_{Tsum} < 300 \text{ GeV}$           |
| $35 < m_{\rm T2} < 60 {\rm GeV}$                 | $35 < m_{T2} < 60 \text{ GeV}$                                       | $35 < m_{T2max} < 60 \text{ GeV}$               | $35 < m_{T2max} < 60 \text{ GeV}$            |



(a) SR-C1C1-LM





(b) SR-C1N2OS-LM



### **C1N2OS**



#### C1N2SS

| SM-process            | SR-C1N2SS-LM    | SR-C1N2SS-HM      |
|-----------------------|-----------------|-------------------|
| Тор                   | $0.01 \pm 0.01$ | $0.84 \pm 0.36$   |
| Multi-boson           | $0.47 \pm 0.11$ | $0.81 \pm 0.21$   |
| Multi-jet             | $0.94 \pm 0.27$ | $-0.086 \pm 0.31$ |
| W+jets                | $0.32 \pm 0.32$ | $0.10 \pm 0.10$   |
| Z+jets                | $0.20 \pm 0.20$ | $0.59 \pm 0.56$   |
| Higgs                 | $0.00 \pm 0.00$ | $0.02 \pm 0.00$   |
| SM total              | $1.95 \pm 0.48$ | $2.35 \pm 0.80$   |
| Ref. point (325, 175) | $7.80 \pm 1.27$ | $2.26 \pm 0.71$   |
| Ref. point (500, 300) | $3.78\pm0.65$   | $5.62 \pm 0.88$   |
| Ref. point (900, 300) | $0.84 \pm 0.07$ | $6.23 \pm 0.21$   |

| SR-C1N2SS-LM                                                                  | SR-C1N2SS-HM                           |  |
|-------------------------------------------------------------------------------|----------------------------------------|--|
| >= 2 medium taus (SS)                                                         |                                        |  |
|                                                                               | <i>b</i> -jet veto                     |  |
| $\Delta \Phi(\tau_1, \tau_2) > 1.5$                                           |                                        |  |
| $N_{jets} < 3$                                                                | -                                      |  |
| $m_{Tsum} > 200 \text{ GeV}$                                                  | $m_{Tsum} > 450 \text{ GeV}$           |  |
| $m_T^{\rm m}$                                                                 | $a_2^{ax} > 80 \text{ GeV}$            |  |
| asymmetric di-tau trigger                                                     | di-tau+ $E_{\rm T}^{\rm miss}$ trigger |  |
| $E_{\rm T}^{\rm miss} < 150 {\rm GeV}$ $E_{\rm T}^{\rm miss} > 150 {\rm GeV}$ |                                        |  |
| $\tau_1$ and $\tau_2 p_T$ requirements described in Table 12 in Section 4.3   |                                        |  |



| W-CR                                 | W-VR                                                    |  |  |
|--------------------------------------|---------------------------------------------------------|--|--|
| pass TrigHLT_mu20_i                  | loose_L1MU15 (2015) and HLT_mu26_ivarmedium (2016-2018) |  |  |
|                                      | == 1 medium tau and 1 isolated muon (SS)                |  |  |
|                                      | baseline electron veto                                  |  |  |
| <i>b</i> -veto                       |                                                         |  |  |
|                                      | $50 < m_T(\mu) < 150 \text{GeV}$                        |  |  |
|                                      | $m_{\rm T}(\tau) + m_{\rm T}(\mu) > 80 { m GeV}$        |  |  |
| $m_{T2}(\mu, \tau) < 60 \text{ GeV}$ | $m_{T2}(\mu, \tau)) \ge 60 \text{ GeV}$                 |  |  |

| TopVRLowMass                                                                    | TopCRHighMass                                | TopVRHighMass                  |  |  |
|---------------------------------------------------------------------------------|----------------------------------------------|--------------------------------|--|--|
| n <sub>at</sub>                                                                 | $n_{\rm at\ least\ very\ loose\ taus} \ge 2$ |                                |  |  |
| n,                                                                              | at least loose taus $\geq 1$                 |                                |  |  |
| $n_{\rm medium\ taus} < 2$                                                      |                                              |                                |  |  |
| $n_{BJets} \ge 1$                                                               |                                              |                                |  |  |
| asymmetric di-tau trigger di-tau plus met trigger                               |                                              | met trigger                    |  |  |
| $E_T^{\text{miss}} \ge 100 \text{ GeV}$ $E_T^{\text{miss}} \ge 150 \text{ GeV}$ |                                              |                                |  |  |
|                                                                                 | $m_{Tsum} \le 250 \text{ GeV}$               | $m_{Tsum} \ge 250 \text{ GeV}$ |  |  |

#### C1N2SS

| Sample    | W-CR                  | W-VR               | Sample     |  |
|-----------|-----------------------|--------------------|------------|--|
| W+jets    | 88688.2 ± 2242.2      | $6764.4 \pm 540.0$ | W+jets     |  |
| Z+jets    | $17618.9 \pm 554.6$   | $857.2 \pm 96.4$   | Z+ jets    |  |
| top       | $2386.5 \pm 18.7$     | $215.7 \pm 5.7$    | top        |  |
| Muliboson | $1844.5 \pm 16.0$     | $148.8 \pm 4.1$    | Multiboson |  |
| Higgs     | $53.1 \pm 5.4$        | $5.8 \pm 1.8$      | Higgs      |  |
| Multijet  | $0.00 \pm 0.00$       | $0.00 \pm 0.00$    | Multijet   |  |
| SM total  | $110591.2 \pm 2309.9$ | $7992.0 \pm 548.6$ | SM total   |  |
| Data      | 112976                | 7135               | Data       |  |

| Sample     | TopVRLowMass      | TopCRHighMass    | TopVRHighMass    |
|------------|-------------------|------------------|------------------|
| W+jets     | $19.16 \pm 13.77$ | $9.75 \pm 1.49$  | $4.53 \pm 0.95$  |
| Z+ jets    | $4.39 \pm 0.99$   | $3.34 \pm 0.43$  | $1.78 \pm 0.90$  |
| top        | $47.08 \pm 2.70$  | $63.08 \pm 3.15$ | $58.38 \pm 2.98$ |
| Multiboson | $0.92 \pm 0.19$   | $2.66 \pm 0.91$  | $0.69 \pm 0.13$  |
| Higgs      | $0.63 \pm 0.06$   | $0.61 \pm 0.03$  | $0.50 \pm 0.03$  |
| Multijet   | $0.00 \pm 0.00$   | $0.00 \pm 0.00$  | $0.00 \pm 0.00$  |
| SM total   | $72.17 \pm 14.07$ | $79.44 \pm 3.62$ | $65.88 \pm 3.26$ |
| Data       | 52                | 68               | 40               |

#### MBVR

 $\frac{\text{MBVR-SS}}{\text{Two OS signal muons}}$ == 1 signal taub-Jet Veto $E_T^{\text{miss}} \ge 100 \text{GeV}$  $\Delta \Phi(\tau, E_T^{\text{miss}}) \le 1.75$ 

| Sample     | MBVR-SS            |
|------------|--------------------|
| Multiboson | $148.26 \pm 2.01$  |
| top        | $34.35 \pm 2.19$   |
| Zjets      | $17.30 \pm 29.65$  |
| Higgs      | $4.43 \pm 1.31$    |
| Wjets      | $0.08 \pm 0.08$    |
| Total Bkg  | $204.42 \pm 29.83$ |
| data       | $200.00 \pm 14.14$ |
| (325, 175) | $0.46 \pm 0.33$    |
| (375, 175) | $1.09 \pm 0.40$    |

|                        |                      |        | ,                   |
|------------------------|----------------------|--------|---------------------|
| process                | subprocess           | DSID   | SR-C1N2SS-LM        |
|                        | lllv                 | 364253 | $0.2514 \pm 0.0959$ |
| Diboson fully leptonic | lll                  | 364250 | $0.1493 \pm 0.0466$ |
|                        | llvv                 | 364254 | $0.0498 \pm 0.0244$ |
| Dibecen WVii           | lllvjj               | 364284 | $0.0070 \pm 0.0029$ |
| Dibosoli v vjj         | $gg\ell\ell\ell\ell$ | 345706 | $0.0062 \pm 0.0039$ |
| Triboson               | 4l2v                 | 407313 | $0.0021 \pm 0.0021$ |
| 111008011              | $5\ell 1\nu$         | 407312 | $0.0016 \pm 0.0011$ |
| Diboson VVjj           | lllljj               | 364283 | $0.0011 \pm 0.0011$ |
| Triboson               | $6\ell 0\nu$         | 407311 | $0.0001 \pm 0.0001$ |
| Total Multiboson       |                      |        | $0.4686 \pm 0.1095$ |
| process                | subprocess           | DSID   | SR-C1N2SS-HM        |
|                        | llvv                 | 364254 | $0.3783 \pm 0.1888$ |
| Diboson fully leptonic | lllv                 | 364253 | $0.2709 \pm 0.0909$ |
|                        | lll                  | 364250 | $0.0540 \pm 0.0167$ |
| Triboson               | 4l2v                 | 407313 | $0.0403 \pm 0.0137$ |
| Diboson fully lep.     | lvvv                 | 364255 | $0.0163 \pm 0.0099$ |
| Diboson VVjj           | lllvjj               | 364284 | $0.0135 \pm 0.0042$ |
| Triboson               | $3\ell 3\nu$         | 407314 | $0.0122 \pm 0.0122$ |
|                        | ggllvvZZ             | 345723 | $0.0079 \pm 0.0046$ |
| Dibacan WWii           | ggllll               | 345706 | $0.0033 \pm 0.0033$ |
|                        | <i>llvvjj</i>        | 364287 | $0.0027 \pm 0.0027$ |
|                        | <i>llvvjjSS</i>      | 364286 | $0.0011 \pm 0.0011$ |
| Total Multiboson       |                      |        | $0.8005 \pm 0.2113$ |

| subprocess            | DSID                                                                                                                                                                                                                                                                                                                                | MBVR-SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lllv                  | 364253                                                                                                                                                                                                                                                                                                                              | $120.6694 \pm 1.8871$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lll                   | 364250                                                                                                                                                                                                                                                                                                                              | $13.8055 \pm 0.3555$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <i>ℓℓνν</i>           | 364254                                                                                                                                                                                                                                                                                                                              | $5.2136 \pm 0.5509$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| lllvjj                | 364284                                                                                                                                                                                                                                                                                                                              | $4.0025 \pm 0.0650$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 <i>l</i> 2 <i>v</i> | 407313                                                                                                                                                                                                                                                                                                                              | $0.9863 \pm 0.0660$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 <i>l</i> 3v         | 407314                                                                                                                                                                                                                                                                                                                              | $0.8989 \pm 0.1192$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ggllll                | 345706                                                                                                                                                                                                                                                                                                                              | $0.8629 \pm 0.0366$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| llll j j              | 364283                                                                                                                                                                                                                                                                                                                              | $0.5151 \pm 0.0287$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WqqZll                | 363358                                                                                                                                                                                                                                                                                                                              | $0.4553 \pm 0.1171$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ZqqZ\ell\ell$        | 363356                                                                                                                                                                                                                                                                                                                              | $0.3016 \pm 0.1040$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <i>llvvjj</i>         | 364285                                                                                                                                                                                                                                                                                                                              | $0.2470 \pm 0.0564$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5ℓ1v                  | 407312                                                                                                                                                                                                                                                                                                                              | $0.1180 \pm 0.0083$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ggllvvInt             | 345715                                                                                                                                                                                                                                                                                                                              | $0.0945 \pm 0.0552$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ggllvvZZ              | 345723                                                                                                                                                                                                                                                                                                                              | $0.0497 \pm 0.0115$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ggZ\ell\ell Zqq$     | 364302                                                                                                                                                                                                                                                                                                                              | $0.0114 \pm 0.0114$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ggllll0M4l130         | 345705                                                                                                                                                                                                                                                                                                                              | $0.0045 \pm 0.0041$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ℓℓvvjjSSEW4           | 364286                                                                                                                                                                                                                                                                                                                              | $0.0032 \pm 0.0032$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $2\ell 4\nu$          | 407315                                                                                                                                                                                                                                                                                                                              | $0.0127 \pm 0.0080$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <i>llvvjjjSSEW</i> 6  | 364287                                                                                                                                                                                                                                                                                                                              | $0.0022 \pm 0.0022$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6 <i>l</i> 0v         | 407311                                                                                                                                                                                                                                                                                                                              | $0.0080 \pm 0.0009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                                                                                                                                                                                                                                                                                                                     | $148.2624 \pm 2.0118$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       | subprocess           lllv           lllv           lllv           lllv           lllv           sl3v           ggllll           lllvi           ggllll           lllvi           ggllll           ggllll           ggllvvInt           gglllvvZZ           ggllll0M41130           llvvjjSSEW4           llvvjjSSEW6           6l0v | subprocess         DSID $\ell\ell\ell\nu$ 364253 $\ell\ell\ell\ell$ 364250 $\ell\ell\nu\nu$ 364254 $\ell\ell\ell\nu jj$ 364284 $4l2\nu$ 407313 $3\ell3\nu$ 407314 $gg\ell\ell\ell\ell$ 345706 $\ell\ell\ell jj$ 364283 $WqqZ\ell\ell$ 363358 $ZqqZ\ell\ell$ 363356 $\ell\ell\nu\nu jj$ 364285 $5\ell1\nu$ 407312 $gg\ell\ell\nu\nu Int$ 345715 $gg\ell\ell\nu\nu ZZ$ 345723 $gg\ell\ell\ell OM4l130$ 345705 $\ell\ell\nu\nu jjSSEW4$ 364286 $2\ell4\nu$ 407315 $\ell\ell\nu\nu jjSSEW6$ 364287 $6\ell0\nu$ 407311 |

Wh

| variables                           | cut values                                                |
|-------------------------------------|-----------------------------------------------------------|
| $m(\tau_1, \tau_2)$                 | ≥ 40., 50., 60., 70., 80., 90., 100., 110. GeV            |
| $m(\tau_1, \tau_2)$                 | ≤ 80., 90., 100., 110. , 120., 130., 140., 150., 160. GeV |
| $m_{T2}^{max}$                      | $\geq$ 30., 40., 50., 60., 70., 80., 90., 100., 110. GeV  |
| $\mathbf{p}_{\mathrm{T}}(\tau_{1})$ | $\geq 20., 30., 40., 50., 60., 70., 80.$ GeV              |
| $\mathbf{p}_{\mathrm{T}}(\tau_2)$   | ≥ 20., 30., 40., 50. GeV                                  |
| $M_T(\tau_1)$                       | ≥ 0., 20., 30., 40., 50. GeV                              |
| $M_T(lep)$                          | $\geq 0., 20., 40., 60., 80., 100.$ GeV                   |
| M <sub>Tsum</sub>                   | ≥ 0., 300., 350., 400., 450., 500., 550. GeV              |
| N <sub>TightTau</sub>               | $\geq 0, 1, 2$                                            |
| $\Delta \mathbf{R}(\tau_1, \tau_2)$ | $\leq 2.0, 2.2, 2.3, 2.4, 2.5, 2.6, 3., 100.$             |

| SM process    | SR-Wh-LM          | SR-Wh-HM           |
|---------------|-------------------|--------------------|
| Тор           | $2.16 \pm 0.60$   | $0.16 \pm 0.12$    |
| Multiboson    | $1.87 \pm 0.28$   | $1.07 \pm 0.16$    |
| Wjets         | $0.23 \pm 0.22$   | $0.062 \pm 0.062$  |
| Higgs         | $0.131 \pm 0.013$ | $0.059 \pm 0.0082$ |
| Zjets         | $0.061 \pm 0.030$ | $0.030\pm0.022$    |
| total Bkg     | $4.45 \pm 0.70$   | $1.38 \pm 0.21$    |
| (202.5, 72.5) | $4.01 \pm 0.80$   |                    |
| (225.0, 75.0) | $5.79 \pm 0.82$   |                    |
| (375.0, 0)    |                   | $4.02 \pm 0.33$    |

![](_page_22_Figure_3.jpeg)

(a) SR-Wh-LM

![](_page_22_Figure_5.jpeg)

(b) SR-Wh-HM

![](_page_22_Figure_7.jpeg)

(c) SR-Combined

|            | TCR-Wh            | TVR-Wh            |
|------------|-------------------|-------------------|
| Z+jets     | $1.06 \pm 0.37$   | $0.036 \pm 0.085$ |
| W+jets     | -                 | -                 |
| Тор        | $201.67 \pm 5.27$ | $98.73 \pm 3.63$  |
| Multiboson | $3.76 \pm 0.28$   | $1.81 \pm 0.19$   |
| Higgs      | $6.14 \pm 0.092$  | $4.64\pm0.20$     |
| Fakes      | $62.02 \pm 3.14$  | $17.21 \pm 1.86$  |
| Total BG   | $274.66 \pm 6.15$ | $122.43 \pm 4.09$ |
| Data       | 276               | 109               |
| Wh 126_0   | $1.00 \pm 0.72$   | $2.04\pm0.92$     |
| Wh 200_0   | $0.43 \pm 0.15$   | $0.69 \pm 0.18$   |
| Wh 375_0   | $0.06 \pm 0.03$   | $0.32\pm0.11$     |

| Sample     | MB-VR-Wh          |
|------------|-------------------|
| Z+jets     | $7.88 \pm 2.27$   |
| W+jets     | -                 |
| Тор        | $10.08 \pm 1.21$  |
| Multiboson | 83.43 ± 1.59      |
| Higgs      | $1.19 \pm 0.69$   |
| Fakes      | 33.17 ± 2.13      |
| Total BG   | $135.75 \pm 3.76$ |
| Data       | 144               |
| Wh 126_0   | $16.04 \pm 2.56$  |
| Wh 200_0   | $5.61 \pm 0.53$   |
| Wh 375_0   | $0.38 \pm 0.10$   |

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

#### Wh FF control region

1 baseline light lepton passing the signal lepton requirements >= 2 very loose (JetRNNSigTransMin > 0.05) taus (SS) b-jet veto  $m(\tau_1, \tau_2) > 20GeV$   $|\Delta\phi(\tau_1, \tau_2)| < 3$   $m_{T2}^{max} > 20GeV$ single lepton trigger and offline  $p_T$  requirement described in Table 12

## Wh SR

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

**FFs** 

$$N_{f\,akebkg} = N_{data} - N_{MCbkg}^{\ge 1truthtau}$$

![](_page_27_Figure_2.jpeg)

ATLAS Fake Tau Scoping Study : https://cds.cern.ch/record/2300696

SR

CR

T

Region

Nr (Fake 2)

Nanti-c (Fake T)

N<sub>τ</sub>(dota) - N<sub>τ</sub>(Mc, Truth τ) Nanti-τ(data) - Nanti-τ(MC, Truth τ)

tan ID cut

CR

FFzbinz

Region

TRAN ID

 $\widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{\pm} \rightarrow Wh \ \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \qquad \sqrt{s} = 13 \ TeV, \ 36.1 \ - \ 139 \ TeV, \ 36.1 \ TeV, \ 36.1 \ - \ 139 \ TeV, \ 36.1 \ TeV, \ 36.1 \ - \ 139 \ TeV, \ 36.1 \ TeV, \ 36.1 \ - \ 36.1 \ TeV, \ 3$ √s=13 TeV, 36.1 - 139 fb<sup>-1</sup> June 2021 ATLAS Preliminary √s=8,13 TeV, 20.3-139 fb<sup>-1</sup> July 2019 All limits at 95% CL m(  $\widetilde{\chi}_1^0$  ) [GeV] \_\_\_\_\_  $m(\widetilde{\chi}_1^0)$  [GeV] 700 - - · Expected limits All limits at 95% CL **ATLAS** Preliminary  $m(\widetilde{l}_{L}^{\prime}/\widetilde{\tau}_{L}^{\prime}/\widetilde{\nu}) = \frac{1}{2} [m(\widetilde{\chi}_{1}^{0}) + m(\widetilde{\chi}_{1}^{\pm},\widetilde{\chi}_{2}^{0})$ 500 - Observed limits ---- Expected fb<sup>-1</sup>, 1lγγ [1812.09432] 600 1 fb<sup>-1</sup>, 1lbb [1812.09432] - Observed  $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{\,0}$  via 36.1 fb<sup>-1</sup>, 0lbb [1812.09432] l fb<sup>-1</sup>, f<sup>†</sup>[1812.09432] 400 139 fb<sup>-1</sup>, 1lγγ [2004.10894] ι, / ν 21+31 500 139 fb<sup>-1</sup>, 11bb [1909.09226] arXiv:1509.07152 of the of 139 fb<sup>-1</sup>, 3I [2106.01676] 139 fb<sup>-1</sup>, 0I [ATLAS-CONF-2021-022] arXiv:1803.02762 300 400  $\widetilde{\chi}_1^{\scriptscriptstyle +} \widetilde{\chi}_1^{\scriptscriptstyle -}$  via 🔲 Î, / ữ 21 300 200 arXiv:1509.07152 arXiv:1908.0821 200  $\widetilde{\tau}_{_{\rm I}}$  /  $\widetilde{\nu}_{_{\rm T}}$  2 $\tau$ 100 arXiv:1407.0350 100 arXiv:1708.07875  $\widetilde{\chi}_1^{\scriptscriptstyle +} \widetilde{\chi}_1^{\scriptscriptstyle -} / \widetilde{\chi}_1^{\, \pm} \widetilde{\chi}_2^{\, 0}$  via 600 700 800 900 10001100 200 300 400 500 0  $\begin{array}{ccc} 1000 & 1200 \\ m(~\widetilde{\chi}_{1}^{\pm},~\widetilde{\chi}_{2}^{~0})~[\text{GeV}] \end{array}$ 600 200 400 800  $\boxed{\quad } \widetilde{\tau}_{L}^{} / \widetilde{\nu}_{\tau}^{} \quad 2\tau$  $m(\widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{2}^{0})$  [GeV] arXiv:1708.07875