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Types of machine learning

Machine learning is a collection of algorithms that let the computer
find patterns from data by themselves.
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Machine learning and Physics

Learning knowledge:

Human: learn physics laws from observed variables
Machine: learn hidden patterns from big data

Understanding Machine learning:

Hidden patterns = physics law?

Use ML to solve physics problem (Comparing to traditional
method):

Data driven science
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ML in heavy ion physics

Deep learning for nuclear phase transition

l(θ) = − 1

N

N∑
i=1

[yilogŷi + (1− yi)log(1− ŷi)] + λ||θ||22

Nature Communications 2018, LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang.
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ML in heavy ion physics

Stacked U-net for relativistic hydrodynamics

Huang H, Xiao B, Xiong H, Song H,et al. Nuclear Physics A, 2019, 982: 927-930.
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ML in heavy ion physics

Definition of flow harmonics by human

dN

dφ
=

1

2π
(1 + 2

∞∑
n=1

vne
−in(φ−Ψn)) (1)

But why Fourier expansion?

Liu Z, Zhao W, Song H. The European Physical Journal C volume 79, Article number: 870 (2019)
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the Spectral Functions(SPFs)

Closely related to correlator G(τ) by definition

G(τ) =

∫ ∞
0

dω

2π
K(τ, ω)ρ(ω) (2)

Why spectral function?

Theoretical understanding of some experimental observables.

In medium modification of hadrons
heavy quark/quarkonium survival in QGP
Transport coefficients
Photon emission rate
...

Conductivity as an example:

σ ∝ lim
ω→0

ρ(ω)

ω
(3)
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Why hard?

By definition

G(τ) =

∫ ∞
0

dω

2π
K(τ, ω)ρ(ω) (4)

G(τ): lattice QCD calculations or other non-perturbative methods.

Reconstruction of SPF:

ρ(ωi) = K−1
ij ◦G(τj) (5)

ill-posed problem

Large number of degrees of freedom required while fewer are given
Unavoidable noises
Smoothing effect of Kij
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Traditional method

Maximum Entropy Method (MEM)

Bayes’ theorem

P [ρ|GH] =
P [G|ρH]P [ρ|H]

P [G|H]
(6)

Prior probability P [ρ|H] ∝ eαS

the Shannon-Jaynes Entropy

S =

∫ ∞
0

[ρ(ω)−m(ω)− ρ(ω)log( ρ(ω)
m(ω)

)] (7)

Find the most probable ρ(ω) (an optimization problem)1

δP [ρ|GH]

δρ
= 0 (8)

1Using Newton’s Method
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Results using Maximum Entropy Method

Examples using MEM in Fig.

Advantages of MEM:

Prior info encoded

Sharp peaks can be
reconstructed

Defects of MEM:

Dependence on default
model.

Unstable results.

We need comparison between prior
information, and also between
different methods.

Ding H T, Kaczmarek O, Kruse A L, et al. Nuclear Physics A, 2019, 982: 715-718.

Asakawa, M., T. Hatsuda, and Y. Nakahara. Progress in Particle and Nuclear Physics 46, no. 2
(2001): 459–508.
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Radial Basis Functions(RBF) method
To approximate a target function

ytarget(x) ≈
N∑
i=0

aiφ(||x− xi||)

A single hidden layer feed-forward networks

RBF as activation functions

Universal approximation has been proven2

Commonly used Radial Basis Functions

Thin-plate spline: φ(r) = r2ln(r)

Gaussian: φ(r) = e−
r2

2a2

Multiquadric: φ(r) = (r2 + a2)
α
2

2
Park J, Sandberg I W. Neural computation, 1991, 3(2): 246-257. Any continuous function on a

closed, bounded set with arbitrary precision.
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Radial Basis Functions(RBF) method

Applications of RBFs

multivariate function
interpolation and
approximation34

solution of differential and
integral equations567

3
David S Broomhead and David Lowe. Technical report, DTIC Document, 1988.

4
Wang J G, Liu G R. International Journal for Numerical Methods in Engineering, 2002, 54(11):

1623-1648.
5
Kansa EJ. Computers and Mathematics with Applications 1990; 19:127–161.

6
C. Franke , R. Shaback, Applied Mathematics and Computation, Volume 93, Issue 1 (1998) , pp.

73-82.
7
A. Golbabai , S. Seifollahi, Applied Mathematics and Computation, 174 (2006), pp.877-883.
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Reconstruction of Weights Ak

Reformulation of the problem

Using RBF networks, the SPF is parametrized as, (φ, m̄j are given)

ρ(ωj) =
∑
k

φ(|ωj − m̄k|)Ak (9)

Now the SPF is expressed as a weighted summation of RBFs !
Weights Aj are to be solved.

The discreted integral equation now reads (Matrix multiplication)

G(τi) =
∑
j

K(τi, ωj)ρ(ωj) = K · φ ·A (10)

And we want A (although K · φ is irreversible)

Method: using TSVD. Fast, stable, and shape parameter.
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Mock SPFs

Breit-Wigner type SPF:

ρMock(ω) =
∑
i

ρBW (Ai,Γi,Mi, ω) (11)

with
ρBW (Ai,Γi,Mi, ω) =

4AiΓiω

(M2
i + Γ2

i − ω2)2 + 4Γ2
iω

2
, (12)

where Ai is the normalization parameter, Mi denotes the mass of the
particle, carrying the location of the peak, and Γi is the width.

SPF associated with diffusion coefficient ηD

ρV (ω) =
6χ00T

M0

ωηD
ω2 + η2

D

+
3

2π
Θ(ω2 − 4M2

0 )

× ω2 tanh(ω/4T )
√

1− 4M2
0 /ω

2

× [1 + 4M2
0 /ω

2].

(13)
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Results of RBF

Prediction using correlators with Gaussian Noise(width=ε)
Mock SPF of Breit-Wigner type.

Comparison between RBF and Maximum Entropy method.
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Results of RBF

Prediction using correlators with Gaussian Noise(width=ε)
Mock SPF of Breit-Wigner type.

SPF with negative part.
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Results of RBF

Prediction using correlators

Associated with the heavy quark diffusion
Uncertainty comes from noises in parameter

Low frequency part of SPF and predicted coefficients.
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Summary

RBF representation is continuous and analytic.

TSVD method is fast and stable, and we need shape parameter to
consider prior information.

Our results in general show better behaviors compared to other
traditional schemes, especially in low frequency region.

RBF method can cope with more complex situations such as
negative SPFs.
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Thank You
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