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Types of machine learning

Machine learning is a collection of algorithms that let the computer
find patterns from data by themselves.
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Types of machine learning

Machine learning is a collection of algorithms that let the computer
find patterns from data by themselves.

Classification
Regression

Supervised learning

Dimension reduction

Unsupervised learning Clustering

Machine learning

Reinforcement learning
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Machine learning and Physics

o Learning knowledge:

o Human: learn physics laws from observed variables
e Machine: learn hidden patterns from big data

@ Understanding Machine learning:
e Hidden patterns = physics law?

e Use ML to solve physics problem (Comparing to traditional
method):
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Y
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Output

Data driven science
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ML in heavy ion physics

Deep learning for nuclear phase transition
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Nature Communications 2018, LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang.
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ML in heavy ion physics

Stacked U-net for relativistic hydrodynamics
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Huang H, Xiao B, Xiong H, Song H,et al. Nuclear Physics A, 2019, 982: 927-930.
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ML in heavy ion physics
Definition of flow harmonics by human
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But why Fourier expansion?

PCA for flow analysis —basic idea
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Liu Z, Zhao W, Song H. The European Physical Journal C volume 79, Article number: 870 (2019)
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the Spectral Functions(SPFs)
e Closely related to correlator G(7) by definition

Gr) = [ GoR () (2

Why spectral function?

@ Theoretical understanding of some experimental observables.

In medium modification of hadrons

heavy quark/quarkonium survival in QGP
Transport coefficients

Photon emission rate

e Conductivity as an example:

o x lim plw) (3)
w—0 w
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Why hard?

By definition

G(r) = [ SR rw)ole) (@

G(7): lattice QCD calculations or other non-perturbative methods.

Reconstruction of SPF:

plwi) = K35 0 G(75) (5)

ill-posed problem

e Large number of degrees of freedom required while fewer are given
e Unavoidable noises
o Smoothing effect of K
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Traditional method
Maximum Entropy Method (MEM)

e Bayes’ theorem

G|pH]|P[p|H]
PG ©)

ppjcm = !

o Prior probability P[p|H] oc e*¥
e the Shannon-Jaynes Entropy

o Find the most probable p(w) (an optimization problem)!

OP[p|GH]

5, =0 (8)

! Using Newton’s Method
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Results using Maximum Entropy Method

Asakawa, 2001
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Examples using MEM in Fig.

Advantages of MEM:
@ Prior info encoded

@ Sharp peaks can be
reconstructed
Defects of MEM:

@ Dependence on default
model.

@ Unstable results.

We need comparison between prior
information, and also between
different methods.

Ding H T, Kaczmarek O, Kruse A L, et al. Nuclear Physics A, 2019, 982: 715-718.
Asakawa, M., T. Hatsuda, and Y. Nakahara. Progress in Particle and Nuclear Physics 46, no. 2

(2001): 459-508.
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Radial Basis Functions(RBF) method

{w;}

To approximate a target function

Z«w o = il

A single hidden layer feed-forward networks
@ RBF as activation functions

Universal approximation has been proven?®

o Commonly used Radial Basis Functions

Thin-plate spline:  ¢(r) = rIn(r)

Gaussian:  ¢(r) = e 242

Multiquadric:  ¢(r) = (r? + a?)2

2Park J, Sandberg I W. Neural computation, 1991, 3(2): 246-257. Any continuous function on a
closed, bounded set with arbitrary precision.
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Radial Basis Functions(RBF) method

—— target function

Applications of RBF's

@ multivariate function
interpolation and
approximation34
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SDavid S Broomhead and David Lowe. Technical report, DTIC Document, 1988.

4Wang J G, Liu G R. International Journal for Numerical Methods in Engineering, 2002, 54(11):
1623-1648.

5Kansa EJ. Computers and Mathematics with Applications 1990; 19:127-161.

GCA Franke , R. Shaback, Applied Mathematics and Computation, Volume 93, Issue 1 (1998) , pp.
73-82.
7A. Golbabai , S. Seifollahi, Applied Mathematics and Computation, 174 (2006), pp.877-883.
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Reconstruction of Weights Ay

Reformulation of the problem

o Using RBF networks, the SPF is parametrized as, (¢, m; are given)
plws) = dllw; — my|) Ay (9)
k

e Now the SPF is expressed as a weighted summation of RBFs !
Weights A; are to be solved.

e The discreted integral equation now reads (Matrix multiplication)

G(r) = ZK(Tz’,wj)p(wj) =K-¢-A (10)

e And we want A (although K - ¢ is irreversible)
@ Method: using TSVD. Fast, stable, and shape parameter.
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Mock SPFs

o Breit-Wigner type SPF:

pMock ZPBW AuPZuMuw) (11)
with i 4A,T;w
A, Ty, My, w) = : 12
PBW( EXT 1)(")) (MZQ T 1—‘12 _ ) i 4]_—‘12(4)27 ( )
where A; is the normalization parameter, M; denotes the mass of the
particle, carrying the location of the peak, and I'; is the width.
e SPF associated with diffusion coefficient np

6x001"  wnp 3 2 2
— + —0 —4M,
My w?+ n% + 2 (w 0)

x w? tanh(w /4T)\/m (13)

x [14+4ME /2.

pv(w) =
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Results of RBF

e Prediction using correlators with Gaussian Noise(width=¢)
e Mock SPF of Breit-Wigner type.

o Comparison between RBF and Maximum Entropy method.
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Results of RBF

e Prediction using correlators with Gaussian Noise(width=¢)

e Mock SPF of Breit-Wigner type.
e SPF with negative part.
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Results of RBF

o Prediction using correlators

e Associated with the heavy quark diffusion
e Uncertainty comes from noises in parameter

e Low frequency part of SPF and predicted coefficients.
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Summary

o RBF representation is continuous and analytic.

o TSVD method is fast and stable, and we need shape parameter to
consider prior information.

@ Our results in general show better behaviors compared to other
traditional schemes, especially in low frequency region.

e RBF method can cope with more complex situations such as
negative SPFs.
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