Application of radial basis functions networks in spectral functions

Zhou Meng

Peking University

November 26, 2021

The 7th China LHC Physics Workshop

Introduction

- Introduction to Machine Learning
- ML in heavy ion physics

2 Machine Learning Spectral Functions

- the Spectral Functions
- Traditional Method
- Our Method

Introduction

• Introduction to Machine Learning

• ML in heavy ion physics

2 Machine Learning Spectral Functions

- the Spectral Functions
- Traditional Method
- Our Method

Types of machine learning

Machine learning is a collection of algorithms that let the computer find patterns from data by themselves.

Types of machine learning

Machine learning is a collection of algorithms that let the computer find patterns from data by themselves.

Machine learning and Physics

- Learning knowledge:
 - Human: learn physics laws from observed variables
 - Machine: learn hidden patterns from big data
- Understanding Machine learning:
 - Hidden patterns = physics law?
- Use ML to solve physics problem (Comparing to traditional method):

Data driven science

Introduction

- Introduction to Machine Learning
- ML in heavy ion physics

2 Machine Learning Spectral Functions

- the Spectral Functions
- Traditional Method
- Our Method

ML in heavy ion physics

Deep learning for nuclear phase transition

Nature Communications 2018, LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang.

ML in heavy ion physics

Stacked U-net for relativistic hydrodynamics

Huang H, Xiao B, Xiong H, Song H, et al. Nuclear Physics A, 2019, 982: 927-930.

ML in heavy ion physics

Definition of flow harmonics by human

$$\frac{dN}{d\phi} = \frac{1}{2\pi} (1 + 2\sum_{n=1}^{\infty} v_n e^{-in(\phi - \Psi_n)})$$
(1)

But why Fourier expansion?

Liu Z, Zhao W, Song H. The European Physical Journal C volume 79, Article number: 870 (2019)

Introduction

- Introduction to Machine Learning
- ML in heavy ion physics

2 Machine Learning Spectral Functions• the Spectral Functions

- Traditional Method
- Our Method

the Spectral Functions(SPFs)

• Closely related to correlator $G(\tau)$ by definition

$$G(\tau) = \int_0^\infty \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega) \tag{2}$$

Why spectral function?

• Theoretical understanding of some experimental observables.

- In medium modification of hadrons
- heavy quark/quarkonium survival in QGP
- Transport coefficients
- Photon emission rate
- ...
- Conductivity as an example:

$$\sigma \propto \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega} \tag{3}$$

Why hard?

• By definition

$$G(\tau) = \int_0^\infty \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega) \tag{4}$$

- $G(\tau)$: lattice QCD calculations or other non-perturbative methods.
- Reconstruction of SPF:

$$\rho(\omega_i) = K_{ij}^{-1} \circ G(\tau_j) \tag{5}$$

• ill-posed problem

- Large number of degrees of freedom required while fewer are given
- Unavoidable noises
- Smoothing effect of K_{ij}

Introduction

- Introduction to Machine Learning
- ML in heavy ion physics

2 Machine Learning Spectral Functions

- the Spectral Functions
- Traditional Method
- Our Method

Traditional method

Maximum Entropy Method (MEM)

• Bayes' theorem

$$P[\rho|GH] = \frac{P[G|\rho H]P[\rho|H]}{P[G|H]}$$
(6)

- Prior probability $P[\rho|H] \propto e^{\alpha S}$
- the Shannon-Jaynes Entropy

$$S = \int_0^\infty [\rho(\omega) - m(\omega) - \rho(\omega) \log(\frac{\rho(\omega)}{m(\omega)})]$$
(7)

• Find the most probable $\rho(\omega)$ (an optimization problem)¹

$$\frac{\delta P[\rho|GH]}{\delta \rho} = 0 \tag{8}$$

¹Using Newton's Method

Results using Maximum Entropy Method

Examples using MEM in Fig.

Advantages of MEM:

- Prior info encoded
- Sharp peaks can be reconstructed

Defects of MEM:

- Dependence on default model.
- Unstable results.

We need comparison between prior information, and also between different methods.

Ding H T, Kaczmarek O, Kruse A L, et al. Nuclear Physics A, 2019, 982: 715-718.

Asakawa, M., T. Hatsuda, and Y. Nakahara. Progress in Particle and Nuclear Physics 46, no. 2 (2001): 459–508.

Introduction

- Introduction to Machine Learning
- ML in heavy ion physics

2 Machine Learning Spectral Functions

- the Spectral Functions
- Traditional Method

• Our Method

Radial Basis Functions(RBF) method

To approximate a target function

$$y^{target}(x) \approx \sum_{i=0}^{N} a_i \phi(||x - x_i||)$$

A single hidden layer feed-forward networks
RBF as activation functions
Universal approximation has been proven²

• Commonly used Radial Basis Functions

Thin-plate spline: $\phi(r) = r^2 ln(r)$ Gaussian: $\phi(r) = e^{-\frac{r^2}{2a^2}}$ Multiquadric: $\phi(r) = (r^2 + a^2)^{\frac{\alpha}{2}}$

²Park J, Sandberg I W. Neural computation, 1991, 3(2): 246-257. Any continuous function on a closed, bounded set with arbitrary precision.

Radial Basis Functions(RBF) method

Applications of RBFs

- multivariate function interpolation and approximation³⁴
- solution of differential and integral equations 567

⁵Kansa EJ. Computers and Mathematics with Applications 1990; 19:127–161.

⁷A. Golbabai, S. Seifollahi, Applied Mathematics and Computation, 174 (2006), pp.877-883.

³David S Broomhead and David Lowe. Technical report, DTIC Document, 1988.

⁴Wang J G, Liu G R. International Journal for Numerical Methods in Engineering, 2002, 54(11): 1623-1648.

 $^{^{6}}$ C. Franke , R. Shaback, Applied Mathematics and Computation, Volume 93, Issue 1 (1998) , pp. 73-82.

Reconstruction of Weights A_k

Reformulation of the problem

• Using RBF networks, the SPF is parametrized as, $(\phi, \bar{m}_j \text{ are given})$

$$\rho(\omega_j) = \sum_k \phi(|\omega_j - \bar{m}_k|) A_k \tag{9}$$

- Now the SPF is expressed as a weighted summation of RBFs ! Weights A_j are to be solved.
- The discreted integral equation now reads (Matrix multiplication)

$$G(\tau_i) = \sum_j K(\tau_i, \omega_j) \rho(\omega_j) = K \cdot \phi \cdot A$$
(10)

- And we want A (although $K \cdot \phi$ is irreversible)
- Method: using TSVD. Fast, stable, and shape parameter.

Mock SPFs

• Breit-Wigner type SPF:

$$\rho_{Mock}(\omega) = \sum_{i} \rho_{BW}(A_i, \Gamma_i, M_i, \omega) \tag{11}$$

with

$$\rho_{BW}(A_i, \Gamma_i, M_i, \omega) \stackrel{i}{=} \frac{4A_i \Gamma_i \omega}{(M_i^2 + \Gamma_i^2 - \omega^2)^2 + 4\Gamma_i^2 \omega^2},$$
 (12)

where A_i is the normalization parameter, M_i denotes the mass of the particle, carrying the location of the peak, and Γ_i is the width.

• SPF associated with diffusion coefficient η_D

$$\rho_{V}(\omega) = \frac{6\chi_{00}T}{M_{0}} \frac{\omega\eta_{D}}{\omega^{2} + \eta_{D}^{2}} + \frac{3}{2\pi}\Theta(\omega^{2} - 4M_{0}^{2}) \\ \times \omega^{2} \tanh(\omega/4T)\sqrt{1 - 4M_{0}^{2}/\omega^{2}} \\ \times [1 + 4M_{0}^{2}/\omega^{2}].$$
(13)

Results of RBF

- Prediction using correlators with Gaussian Noise(width=ε)
 Mock SPF of Breit-Wigner type.
- Comparison between RBF and Maximum Entropy method.

Results of RBF

- Prediction using correlators with Gaussian Noise(width=ε)
 Mock SPF of Breit-Wigner type.
- SPF with negative part.

Results of RBF

- Prediction using correlators
 - Associated with the heavy quark diffusion
 - Uncertainty comes from noises in parameter
- Low frequency part of SPF and predicted coefficients.

- RBF representation is continuous and analytic.
- TSVD method is fast and stable, and we need shape parameter to consider prior information.
- Our results in general show better behaviors compared to other traditional schemes, especially in low frequency region.
- RBF method can cope with more complex situations such as negative SPFs.

Thank You