Exotic searches at the LHC

Junquan Tao (IHEP/CAS, Beijing) 陶军全(中科院高能所)

第七届中国LHC物理研讨会 <u>7th China LHC Physics Workshop (CLHCP2021)</u> 25-28 November 2021, Nanjing (online)

中國科學院為能物現湖完施 Institute of High Energy Physics Chinese Academy of Sciences

CLHCP

2021

Introduction

- Many BSM models exist to cover the limitations of the SM : hierarchy problem, baryon asymmetry, neutrino masses, dark matter, ...
- > LHC provides a great place to search for these models
- > Lots of searches for such new physics have being explored in ATLAS and CMS

Exotic searches (no	n-SUSY) cover a wide	ran	ge of p	ooss	sibilities	Other	$\begin{array}{cccccc} \text{LHSM Majorana } \gamma & & & & & 2\mu & & 2j & - & & 36.1 \\ \text{Higgs triplet } H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} & & 2,3,4 e,\mu (\text{SS}) \text{various} & \text{Yes} & 139 \\ \text{Higgs triplet } H^{\pm\pm} \rightarrow \ell \ell & & 2,3,4 e,\mu (\text{SS}) & - & - & 36.1 \\ \text{Higgs triplet } H^{\pm\pm} \rightarrow \ell \tau & & 3 e,\mu,\tau & - & - & 20.3 \\ \text{Multi-charged particles} & \text{ATLAS} & & - & - & 36.1 \\ \text{Magnetic monopoles} & \text{ATLAS} & & - & - & 34.4 \\ \end{array}$		
 Additional Higgs boson and di-Higgs production Leptoquarks 			RPV stop to 4 qu RPV squark to 4 RPV gluino to 4 c RPV gluinos to 3	oquarks	scalar LQ (pair prod.), coupling to 1 st scalar LQ (pair prod.), coupling to 1 st scalar LQ (pair prod.), coupling to 2 nd scalar LQ (pair prod.), coupling to 2 nd	ther	String resonance Z γ resonance Higgs γ resonance Color Octect Scalar, $k_s^2 = 1/2$		
 New fermions and gaug Dark matter 	ge bosons	suc	ADD (jj) HLZ, n _{ED} ADD (γγ, ℓℓ) HLZ, ADD G _{KK} emissio ADD OBH (jj), n _{Ef}	Lept	scalar LQ (pair prod.), coupling to 2 nd scalar LQ (pair prod.), coupling to 3 rd scalar LQ (single prod.), coup. to 3 rd ç	0	Scalar Diquark $t\bar{t} + \phi$, pseudoscalar (scalar), $g_{top}^2 \times BR(\phi \rightarrow 2\ell) > = 0.03(0.004)$ $t\bar{t} + \phi$, pseudoscalar (scalar), $g_{top}^2 \times BR(\phi \rightarrow 2\ell) > = 0.03(0.04)$		
✓ Long-lived particles		xtra Dimensic	ADD QBH ($e\mu$), n RS G _{KK} ($\gamma\gamma$), k/\overline{M}_{Pl} RS QBH (jj), n_{ED} RS QBH ($e\mu$), n_{EC} non-rotating BH, split-UED, $\mu \ge 4$ 1 RS G _{KK} ($q\bar{q}, gg$), k	ge Bosons	Z _D , narrow resonance Z _D , narrow resonance SSM Z' SSM Z'(<i>aā</i>)	ontact ractions	quark compositeness $(q\tilde{q})$, $\eta_{\text{LL/RR}} = 1$ quark compositeness (ℓl) , $\eta_{\text{LL/RR}} = 1$ quark compositeness $(q\tilde{q})$, $\eta_{\text{LL/RR}} = -1$ quark compositeness (ℓl) , $\eta_{\text{LL/RR}} = -1$ Excited Lepton Contact Interaction Excited Lepton Contact Interaction		
	new bosons				$Z'(q\bar{q})$ Superstring Z'_{ψ} LFV Z', BR(e μ) = 10%	Inte			
Selected searches	new fermions	Excited	excited light qua excited b quark, excited light qua excited electron,	Heavy Gaug	Leptophobic Ζ' SSM W'(ℓν) SSM W'(τν) SSM W'(σα̃)	ter	(axial-)vector mediator ($\chi\chi$), $g_q = 0.25$, $g_{DM} = 1$, $m_\chi = 1$ GeV (axial-)vector mediator ($q\bar{q}$), $g_q = 0.25$, $g_{DM} = 1$, $m_\chi = 1$ GeV scalar mediator ($+t/t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_\chi = 1$ GeV pseudoscalar mediator ($+t/t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_\chi = 1$ GeV		
* More in Lailin Xu's talk "Dark matter and unconventional searches at the LHC"			excited muon, f_s vMSM, $ V_{eN} ^2 = 1$ vMSM, $ V_{eN}V_{\mu N}^* ^2/$		LRSM $W_R(\ell N_R)$, $M_{N_R} = 0.5M_{W_R}$ LRSM $W_R(\tau N_R)$, $M_{N_R} = 0.5M_{W_R}$ Axigluon, Coloron, $cot\theta = 1$	Dark Mat	scalar mediator (fermion portal), $\lambda_u = 1$, $m_{\chi} = 1$ GeV complex sc. med. (dark QCD), $m_{n_{DK}} = 5$ GeV, $c_{T_{X_{DK}}} = 25$ mm Baryonic Z', $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV Z' - 2HDM, $g_{Z'} = 0.8$, $g_{DM} = 1$, $tan\beta = 1$, $m_{\chi} = 100$ GeV		
Many contributions from ATLAS-China and CMS-China groups on		Hea	Type-III seesaw heavy termions, Flavor-democratic Vector like taus, Doublet			Vector resonance, $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV Leptoquark mediator, $\beta = 1$, $B = 0.1$, $\Delta_{X,DM_p} = 0.1$, $800 < M_{LQ} < 1500$			

relevant topics, as summarized and presented on the first day

Searches for new bosons

- > Vast searches for new bosons have been performing at the LHC with many final states
 - \checkmark Spin-0 h, H, A, H[±] in 2HDM
 - Simplest BSM extension for SM Higgs sector

See <u>Bing Li</u>'s talk "Search for BSM and rare Higgs at the LHC"

✓ Spin-1 W', Z'

- In many models, e.g. composite Higgs
- Possible solution to hierarchy problem
- ✓ Spin-2 gravitons, spin-0 radions
 - in extra dimension models
 - Possible solution to hierarchy problem
- ✓ Axion-like particles (spin-0 pseudoscalars)
 - Specific case of axion is solution to Strong CP problem
 - DM candidate
- ✓ Leptoquarks (spin-0/1)
 - possible explanation for LHCb flavour anomalies
- Full Run-2 dataset: probe multi-TeV masses

Z' → ℓℓ

CMS search for high mass resonance in ℓℓ final state

- Background shapes estimated from MC, normalisation from low m_{II} (<120 GeV) region</p>
- ee: no requirement on the sign of electrons, to avoid significant drop on the signal selection efficiency of high-energy electrons
- ➤ Limits are set on the ratio of σ^*B for Z' → ℓℓ
 Exclude Sequential SM boson Z'_{SSM} mass up to 5.15 TeV
 and Left-right-symmetric models Z'_ψ mass up to 4.56 TeV

Comparable to ATLAS's results (<u>*PLB* 796 (2019) 68-87</u>) : excluded below 5.1 (4.5) TeV for Z'_{SSM} (Z'_{ψ})

CMS

Heavy BSM $X \rightarrow e\mu$, $e\tau$, $\mu\tau$

CMS

 10^{-2}

10

10

Preliminary

 \succ Final states considered: $e\mu$, $e\tau_h$, $\mu\tau_h$ (all isolated, prompt, no sign requirements)

> Signal inference:

- eµ channel: dilepton mass

 $-\ell \tau_h$ channels: colinear mass (m_{col} = m_{vis} /sqrt(x_{τ}^{vis}) with visible mass m_{vis} and fraction of energy x_{τ}^{vis} of visible product); reported by CMS for the first time

\succ No excess is observed:

 Model-specific limits vs m: excluded Z' mass up to 5.0/4.3/4.1 TeV, QBH threshold mass up to 5.6/5.2/5.0 TeV, for $e\mu/e\tau_h/\mu\tau_h$

• Model-independent limits on $\sigma^* \mathcal{B}^* A^* \epsilon$ for $m > m^{\min}$: one can check if his/her favorite model with $X \rightarrow ee'$ (not tested in the paper) is excluded

Heavy resonance $X \rightarrow V\gamma$

Current best exclusions of these processes

Local 2.8 σ (3.1 σ) at 1.58TeV for narrow (broad) signals, for both spin-0 and spin-1

Heavy resonance : $X \rightarrow HH \rightarrow 4b$

Search for **spin-0 radion** and **spin-2 bulk graviton** for **pair production of Higgs boson** in the **4***b* final state

- > ATLAS with two event topologies:
 - ✓ resolved with 4 b-tags (251-1500 GeV)
 - ✓ boosted with 2-, 3-, 4- b-tag categories (900-3000 GeV)

Long-lived Scalars : $ZH \rightarrow ZSS \rightarrow 2I + 4b$

ATLAS : search for pairs of **long-lived scalars** using **displaced vertices** q

- ➢ Benchmark: Higgs boson production associated with
 Z, H decaying to long-lived scalars, Z→II
- Prompt dilepton + displaced jets final state
- Reconstruct large d0 tracks (Large Radius Tracking, LRT) to build displaced vertex (DV) : match DV to displaced jet
- Branching ratios above 10% are excluded at 95% CL for LLP *cτ* as small as 4 mm and as large as 100 mm
- For m_a<40 GeV, these results represent the most stringent constraint in this lifetime regime
- First time this lifetime range in tested in ATLAS

Searches for Leptoquarks (LQ)

Searches for new fermions

Many searches for new fermions at the LHC

Excited states of quarks/leptons (q*, l*)

• Composited Higgs can regulate Higgs boson mass

Vector-like quarks (VLQ)

• Present in various scenarios (extra dimensions, SUSY, Little Higgs,...) trying to solve the hierarchy problem

• VLQs are **colored spin-1/2 fermions** but their L/R-handed components transform the same way under SU(2)

• In simplified models VLQ mix with their SM partners to regulate the Higgs boson mass

Heavy neutral leptons/neutrinos (HNL)

• Can generate small neutrino mass via seesaw mechanism

excited light quark $(q\gamma)$, $f_S = f = f' = 1$, $\Lambda = m_q^*$ excited b quark, $f_S = f = f' = 1$, $\Lambda = m_q^*$ excited light quark (qg), $\Lambda = m_q^*$ excited electron, $f_S = f = f' = 1$, $\Lambda = m_e^*$ excited muon, $f_S = f = f' = 1$, $\Lambda = m_\mu^*$

Excited Fermions

> ν MSM, $|V_{eN}|^2 = 1.8$, $|V_{\mu N}|^2 = 1.8$ ν MSM, $|V_{eN}V_{\mu N}^*|^2/(|V_{eN}|^2 + |V_{\mu N}|^2) = 1.0$ Type-III seesaw heavy fermions, Flavor-democratic Vector like taus, Doublet

CMS-EXO-Pub

07	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$2 e 2 \mu 1 \tau 0 e, \mu \ge 2 e, \mu, \ge 1 \tau 0 e, \mu, \ge 1 \tau$		Yes Yes Yes Yes - Yes	139 139 139 139 139 139
Heavy quarks	$\begin{array}{l} VLQ \ TT \to Zt + X \\ VLQ \ BB \to Wt/Zb + X \\ VLQ \ T_{5/3} T_{5/3} T_{5/3} \to Wt + X \\ VLQ \ T \to Ht/Zt \\ VLQ \ Y \to Wb \\ VLQ \ B \to Hb \end{array}$	$2e/2\mu/\ge 3e,\mu$ multi-channe $2(SS)/\ge 3e,\mu$ $1e,\mu$ $1e,\mu$ $0e,\mu$	$u \ge 1 b, \ge 1 j$ e) $u \ge 1 b, \ge 1 j$ $\ge 1 b, \ge 3 j$ $\ge 1 b, \ge 1 j$ $\ge 2b, \ge 1 j, \ge 1 J$	- Yes Yes Yes	139 36.1 36.1 139 36.1 139
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton γ^*	1γ 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3

ATL-PHYS-PUB-2021-033

Single VLQ T→tH/tZ in lv+jets

- ATLAS: search for the single production of an up-type vector-like quark
 (T) decaying as T→tH or T→tZ, subsequently H→bb or Z→qq
- Final states contain a single lepton with multiple jets and b-jets
- Search for excess in **effective mass** (scalar sum of objects' pT)

- Limits on the mass and universal coupling strength
 (κ) of the vector like quark
 - κ values above 0.5 are excluded for all masses below 1.8 TeV
 - At a mass of **1.6 TeV**, к values as low as **0.41** are excluded

Red contour lines : exclusion limits of equal $\sigma \times B$ (pb)

m_τ [GeV]

Heavy neutral lepton and heavy W_R

CMS-PAS-EXO-20-002

- > Search covers **both regions** of phase space:
 - resolved: two same-flavor leptons (e or μ) and two quarks, Iljj
- **boosted** $(m(W_R) >> m_N)$: decay products of the heavy neutrino are
- merged into a single large-area jet \rightarrow one lepton (e or μ) and single jet, IJ
 - ✓ subleading lepton within large-R jet cone
 - ✓ **Jet substructure** used to identify boosted decay

Heavy Neutral Lepton : displaced dilepton

- CMS
- CMS: search for heavy neutral leptons (right-handed Dirac or Majorana CMS-PAS-EXO-20-009 neutrinos) in final states with three charged leptons (e or μ)
- For m_N < 20 GeV and small HNL-SM neutrino mixing parameter ($|V_{µ/e}|^2 < 10^{-2}$), N can be long-lived $τ_N \propto m_N^{-5} V_{Nl}^{-2}$
- Exclusion limits on mixing parameter of Dirac and Majorana N with SM leptons improved by an order of magnitude wrt previous results : exclusions extend in the range of 10⁻⁷–10⁻⁵

Exclusion limits on the coupling strength parameters of Dirac and Majorana neutrinos with e/ μ 15

Dark Matter and dark sector

$H/DM \rightarrow inv : Z(II) + MET$

Limits from this search are particularly competitive for low DM masses

1000

m_{med} [GeV]

1200

med

VBF H → Dark Photons

CMS

Both ATLAS and CMS probed coupling of a scalar Higgs boson to a dark photon through a dark sector via VBF Higgs boson production (γ+dark-γ pair)^q

 $\checkmark\,$ Takes advantage of 2 large $|\Delta\eta|$ jets recoiling against MET + γ

 \checkmark Use **transverse mass** (γ +MET) as a discriminating variable to extract signal

Mono-jet and mono-V (had)

- DM: decays of the Higgs boson or colorless spin-1 and spin-0 mediators
- Mono-V: Machine learning (Artificial Neural Networks) is used to identify V-jets and efficiently suppress the QCD jets

spin-1

JHEP11(2021)153

CMS-EXO-20-004

 Φ

spin-0

Summary

A large number of Beyond the Standard Model (SM) models exist to cover the limitations of the SM : many of them being explored at the LHC

No significant sign of BSM observed so far

- Presented some models/signatures explored for the first time
- ✓ Sensitivity with full Run 2 data significantly improving Run 1 result and early Run 2 data thanks to new analysis techniques
 - → Extended phase-space excluded
- ✓ Many more analyses ongoing!

➢ Run 3 is coming soon with:

- ✓ more data
- new ideas (theory and experiment) to probed uncovered phase-space

								JL	at = (3	.6 – 139) 10 -	$\gamma s = 0, 13$ lev
Model	ℓ,γ	Jets†	ET	∫£ dt[fb	1]	Limi	t				Reference
$\begin{array}{c} ADD\; G_{KK} + g/q\\ ADD\; non-resonant\; \gamma\gamma\\ ADD\; OBH\\ ADD\; BH\; multijet\\ RS1\; G_{KK} \to \gamma\gamma\\ Bulk\; RS\; G_{KK} \to WW/ZZ\\ Bulk\; RS\; G_{KK} \to WW / LZ\\ Bulk\; RS\; g_{KK} \to tt\\ Bulk\; RS\; g_{KK} \to tt\\ 2UED/\; RPP \end{array}$	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \gamma \\ - \\ 2 \gamma \\ multi-chann \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4 j 2 j ≥3 j - el 2 j / 1 J ≥1 b, ≥1 J/2 ≥2 b, ≥3 j	Yes - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1 36.1	Mp Ms Mth Grkr mass Grkr mass Grkr mass Krk mass Kr mass		2.3 2.0 Te 1.8 TeV	8. 8 9 4.5 TeV 7 V 3.8 TeV	11.2 TeV 6 TeV .9 TeV .55 TeV	$ \begin{array}{l} n=2 \\ n=3 \ \text{HIZ NLO} \\ n=6 \\ n=6, M_D=3 \ \text{TeV, rot BH} \\ k/\overline{M}_{PI}=0.1 \\ k/\overline{M}_{PI}=1.0 \\ k/\overline{M}_{PI}=1.0 \\ f/m-15\% \\ Ther(11), \mathcal{B}(A^{(1.1)} \rightarrow tt)=1 \end{array} $	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to t\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{SSM} W' \to t\nu \\ \operatorname{HVT} W' \to WZ \to \ell\nu qq \operatorname{Ind} \\ \operatorname{HVT} Z' \to ZH \operatorname{Indel} B \\ \operatorname{HVT} W' \to WH \operatorname{Indel} B \\ \operatorname{HVT} W' \to WH \operatorname{Indel} B \\ \operatorname{LRSM} W_{RS} \to \mu M_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ - \\ 0 \ e \ e, \mu \\ 0 \ e \ e, \mu \\ 0 \ e, \mu \\ 2 \ \mu \end{array}$	- 2 b ≥1 b, ≥2 J - 2 j/ J 1-2 b ≥1 b, ≥2 J 1 J	- Yes Yes Yes - Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass W' mass Z' mass Z' mass W _R mass		2.42 2.1 Tr	5.1 TeV eV 4.1 TeV 5.0 TeV 4.4 TeV 4.3 TeV 3.2 TeV 3.2 TeV 5.0 TeV 5.0 TeV		$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $g_V = 0.5$ TeV, $g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-02 ATLAS-CONF-2021-04 2004.14636 ATLAS-CONF-2020-04 2007.05293 1904.12679
Cl qqqq Cl ℓℓqq Cl eebs Cl µµbs Cl tttt	- 2 e,μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.8 TeV 2.0 Te 2.5	V 7 TeV		$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL} \\ & \textbf{35.8 TeV} \\ g_{*} = 1 \\ g_{*} = 1 \\ C_{4r} = 4\pi \end{array} \qquad $	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
Axial-vector med. (Dirac DM Pseudo-scalar med. (Dirac D Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+ Scalar reson. $\phi \rightarrow t\chi$ (Dirac	0 e, μ, τ, γ M) 0 e, μ, τ, γ DM) 0 e, μ a multi-chann DM) 0-1 e, μ	1 - 4 j 1 - 4 j 2 b el 1 b, 0-1 J	Yes Yes Yes Yes	139 139 139 139 36.1	m _{med} m _{med} m _{med} m _{med}	376 GeV 560 G	2.1 To GeV	eV 3.1 TeV 3.4 TeV		$\begin{array}{l} g_q \!=\! 0.25, g_{\chi} \!=\! 1, m(\chi) \!=\! 1 \; \mathrm{GeV} \\ g_q \!=\! 1, g_{\chi} \!=\! 1, m(\chi) \!=\! 1 \; \mathrm{GeV} \\ \tan\beta \!=\! 1, g_Z \!=\! 0.8, m(\chi) \!=\! 10 \; \mathrm{GeV} \\ \tan\beta \!=\! 1, g_{\chi} \!=\! 1, m(\chi) \!=\! 10 \; \mathrm{GeV} \\ y \!=\! 0.4, \lambda \!=\! 0.2, m(\chi) \!=\! 10 \; \mathrm{GeV} \end{array}$	2102.10874 2102.10874 ATLAS-CONF-2021-00 ATLAS-CONF-2021-03 1812.09743
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \\ 0 \ e, \mu, \geq 1 \end{array}$	≥2j ≥2j 2b ≥2j,≥2b τ≥1j,≥1b 0-2j,2b	Yes Yes Yes Yes - Yes	139 139 139 139 139 139	LQ mass LQ mass LQ [®] mass LQ [®] mass LQ [®] mass LQ [®] mass		1.8 TeV 1.7 TeV 1.2 TeV 1.24 TeV 1.43 TeV 1.43 TeV 1.26 TeV			$\begin{array}{l} \beta = 1 \\ \beta - 1 \\ \mathcal{B}(\mathbf{L}\mathbf{Q}_{3}^{\prime} \to b\tau) = 1 \\ \mathcal{B}(\mathbf{L}\mathbf{Q}_{3}^{\prime} \to t\nu) = 1 \\ \mathcal{B}(\mathbf{L}\mathbf{Q}_{3}^{\prime} \to t\tau) = 1 \\ \mathcal{B}(\mathbf{L}\mathbf{Q}_{3}^{\prime} \to b\nu) = 1 \end{array}$	2006.05872 2006.05872 ATLAS-CONF-2021-00 2004.14060 2101.11582 2101.12527
$ \begin{array}{c} VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} T_{5/3} \rightarrow Wt + \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ Y \rightarrow Wb \\ VLQ \ B \rightarrow Hb \end{array} $	$\begin{array}{c} 2e/2\mu/\geq 3e,\\ \text{multi-chann}\\ X 2(\text{SS})/\geq 3 \ e,\\ 1 \ e, \mu\\ 1 \ e, \mu\\ 0 \ e, \mu \end{array}$	$u \ge 1 \text{ b}, \ge 1 \text{ j}$ $\mu \ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 1 \text{ b}, \ge 3 \text{ j}$ $\ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 20, \ge 1\text{ j}, \ge 1$	- Yes Yes Yes IJ -	139 36.1 36.1 139 36.1 139	T mass B mass T _{5/3} mass T mass Y mass B mass		1.4 TeV 1.34 TeV 1.64 TeV 1.85 TeV 1.85 TeV 2.0 Te	V		$\begin{array}{l} SU(2) \text{ doublet} \\ SU(2) \text{ doublet} \\ \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ SU(2) \text{ singlet, } \kappa_T = 0.5 \\ \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ SU(2) \text{ doublet, } \kappa_B = 0.3 \end{array}$	ATLAS-CONF-2021-02 1808.02343 1807.11883 ATLAS-CONF-2021-04 1812.07343 ATLAS-CONF-2021-01
Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton v^*	1γ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass t* mass v* mass		2 1.6 TeV	6.7 Te 5.3 TeV 6 TeV 3.0 TeV	V	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles	2,3,4 e, µ 2 µ 2,3,4 e, µ (S 2,3,4 e, µ (S 3 e, µ, τ –	≥2 j 2 j S) various S) – – –	Yes Yes 	139 36.1 139 36.1 20.3 36.1 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass H ^{±±} mass multi-charged particle ma monopole mass	350 GeV 400 GeV	910 GeV 870 GeV 1.22 TeV 2.37	3.2 TeV TeV		$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_\ell = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_{\ell^+}^{*+} \to \ell\tau) = 1 \\ \text{DY production}, q &= 5e \\ \text{DY production}, g &= 1g_0, \text{spin } 1/2 \end{split}$	ATLAS-CONF-2021-02 1809.11105 2101.11961 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is show † Small-radius (large-radius) jets are denoted by the letter j (J).

ATLASExoticsPublicResults

Overview of CMS EXO results

CMS-EXO-Pub

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

Thanks for your attention!

Backup slides

Single production of a VLQ $T \rightarrow tZ$

Top quark decaying hadronically and the Z boson decaying to neutrinos

search is sensitive to a T quark mass between 0.6 and 1.8 TeV with decay widths ranging from narrow up to 30% of the T quark mass

CMS-PAS-B2G-19-004

IMS

Exotic Higgs Decay $H \rightarrow XX/ZX \rightarrow 4I$

m_{z_} [GeV]

 $Z_d \sim \ell$ U(1)_d dark gauge symmetry

CMS

Consider X as dark photon Z_d, dark Higgs s or pseudo-scalar a

 $H \cdots \oplus K$

- Different strategies for ZX and XX topologies
- Report exclusions on cross section, branching fractions and dark photon model parameters

on ơ(gg

Dark showers

couplings to

SM quarks

χ

CMS-PAS-EXO-19-020

signal (m_{dark} = 20 GeV,

 $r_{inv} = 0.3, \alpha_{dark} = \alpha_{dark}^{peak}$

--m₂ = 2100 GeV

- - m_z = 3100 GeV

m_z = 4100 GeV

CMS Simulation Preliminary

QCD

W(lv)+jets

Z(vv)+jets

units

couplings to dark

quarks (dark hadrons)

(13 TeV)

- CMS : search for resonant production of strongly-coupled dark matter, for the first time at the LHC
- Benchmark: hidden sector coupling to the SM via a heavy leptophobic Z' mediator arising from a broken U(1) symmetry
- Signature: two "semi-visible" jets (contain both visible matter and invisible dark matter), one of them aligned with MET
- BDT trained using jet substructure variables to distinguish between semivisible jets from standard jets

Status of LLP searches at ATLAS and CMS

ATLAS Preliminary

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: July 2021

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSIC S/PUBNOTES/ATL-PHYS-PUB-2021-033/

CMS

Long-lived Scalars : Complementary searches

 ${\Phi}$

29

Searches for signatures in different subdetectors can be complementary

Can expand the lifetime coverage by using multiple search strategies