

Observation of new $X \rightarrow J/\psi\phi$ and $Z_{cs}^+ \rightarrow J/\psi K^+$ states in $B^+ \rightarrow J/\psi\phi K^+$

Zhihong Shen Peking university

25/11/2021 The 7th China LHC Physics Workshop

Exotic states

- Existence of exotic states predicted when quark model was proposed
- First tetraquark candidate observed at BELLE in 2003, first pentaquark candidates at LHCb in 2015

 Study of exotic states can help to probe the dynamics of low-energy non-perturbative QCD

The LHCb detector

- A single-arm forward spectrometer covering $2 < \eta < 5$
- Designed for heavy flavour physics
- Suitable for spectroscopy study
 - Very precise vertex resolution \rightarrow detect heavy flavor decay vertices $\checkmark \sigma_{PV,x/v} \sim 10 \ \mu m, \sigma_{PV,z} \sim 60 \ \mu m$
 - Powerful particle identification → separate protons/kaons/pions/muons

Search for Z_{cs} ($c\overline{c}u\overline{s}$)

- Several Z_c^- states were observed in e^+e^- collision or *B* decays
 - Natural to search for the SU(3) partner of Z_c
- Similar Feynman diagrams in $B^0 \rightarrow Z_c^- K^+$ and $B^+ \rightarrow Z_{cs}^+ \phi$

 B^+

$B^+ \rightarrow J/\psi \phi K^+$ with Run1 data

- A 6D amplitude analysis (AmAn) was performed to search for $X \to J/\psi \phi$ ($c\bar{c}s\bar{s}$) and $Z_{cs}^+ \to J/\psi K^+$ ($c\bar{c}u\bar{s}$)
- Four X states observed
 - X(4140), X(4274), X(4500), X(4700)
- Z_{cs} not observed
 - But a hint in $m(J/\psi K)$ around 4000 MeV

PRL 118, 022003 (2017)

Update with full Run1 + Run2 data

- Better selection criteria
 - Much higher purity; background fraction ~4%, a factor of 6 smaller
 - 6× larger signal yield

Resonant contributions

Three different decay paths

Amplitude fit (Run1 model)

- Start from using Run1 model
 - 9 K* states + 4 X states
 - · cannot well describe the data

Limited improvement by only adding more K* states

Amplitude fit (updated model)

- Adding exotic states
 - With largest imporvement of fit quality: $Z_{cs}(4000)$, X(4685)
 - Other significant structures: *X*(4630), *Z_{cs}*(4220), *X*(4150)
- Much better description

Fit results

Contribution	Significance $[\times \sigma]$	$M_0[{ m MeV}]$	$\Gamma_0 [{ m MeV}]$
X(4140)	13	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162 \pm 21 {}^{+ 24}_{- 49}$
X(4274)	18	$4294 \pm 4 {}^{+ 3}_{- 6}$	$53\pm5\pm5$
X(4500)	20	$4474\pm3\pm3$	$77\pm 6{}^{+10}_{-8}$
X(4700)	17	$4694 \pm 4^{+16}_{-3}$	$87 \pm 8^{+16}_{-6}$
X(4685)	15	$4684 \pm 7 {}^{+13}_{-16}$	$126 \pm 15 {}^{+37}_{-41}$
X(4630)	5.5	$4626 \pm 16 {}^{+}_{-}{}^{18}_{10}$	$174 \pm 27 {+ 134 \atop - 73}$
X(4150)	4.8	$4146 \pm 18 \pm 33$	$135\pm28{+59\atop-30}$
$Z_{cs}(4000)$	15	$4003\pm6{+4\atop-14}$	$131\pm15\pm26$
$Z_{cs}(4220)$	5.9	$4216\pm24{}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$

- The four *X* states in Run 1 analysis confirmed
- X(4630) and X(4685) observed
- $Z_{cs}(4000)$ and $Z_{cs}(4220)$ observed

Z_{cs}^+ results

- The J^P of $Z_{cs}(4000)^+$ determined as 1^+ , the J^P of $Z_{cs}(4220)^+$ is 1^+ or 1^-
- $Z_{cs}(4000)^+$ can be clearly viewed in slices of $m(J/\psi\phi)$

• The Argand plot indicates the resonant character of $Z_{cs}(4000)^+$

Comparison to BESIII's $Z_{cs}(3985)$

• BESIII observed a narrow Z_{cs} in $D_s D^* + DD_s^*$ mass distribution

$$m_{\text{pole}}[Z_{cs}(3985)^{-}] = (3982.5^{+1.8}_{-2.6} \pm 2.1) \text{ MeV}/c^2,$$

 $\Gamma_{\text{pole}}[Z_{cs}(3985)^{-}] = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{ MeV}.$

- Tests performed:
 - Mass and width of $Z_{cs}(4000)$ fixed to BESIII's result $\rightarrow -2 \ln \mathcal{L}$ is worse by 160 units
 - Adding additional $Z_{cs}(3985)$ doesn't improve the fit
- No evidence that Z_{cs}(3985) and Z_{cs}(4000) are the same state

PRL 126 (2021) 102001

Summary and outlook

- Four new exotic states are observed in $B^+ \rightarrow J/\psi \phi K^+$ channel
 - $Z_{cs}(4000), Z_{cs}(4420), X(4630), X(4685)$
- LHCb upgrade

- Expect to 7x more data by 2029 than current, half of these by 2023
- Could have another 6x increase from Upgrade II
- Open new opportunities for discovery of more exotic states

Thank you for your attention !

