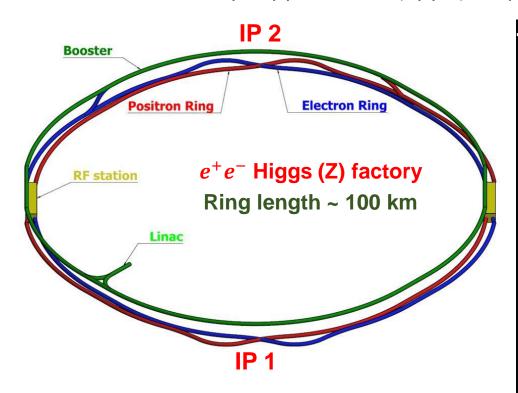
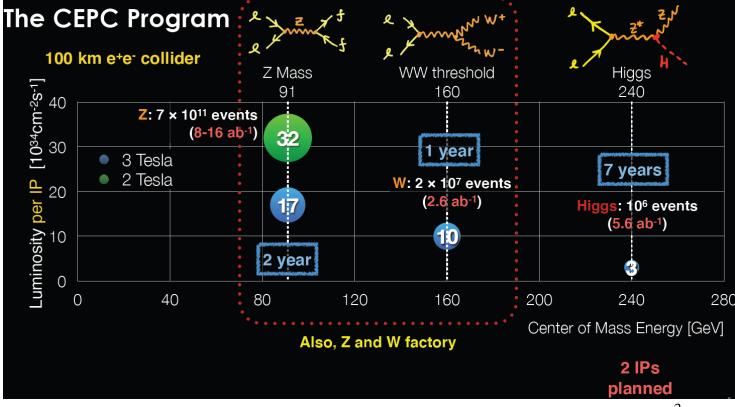
Overview of the CEPC Project

Haijun Yang (for the CEPC working group)
Shanghai Jiao Tong U. and Tsung-Dao Lee Institute

The 7th China LHC Physics Workshop (CLHCP2021) November 25 – 28, 2021

Outline


- > Introduction of the CEPC
 - Goals and Plan
 - Roadmap & Schedule
 - Site Investigation
 - Financial Model
 - Collaboration with Industrial
- > CEPC Project Development
 - **❖** Accelerator R&D
 - Physics Program
 - **❖ New Detector Concept and R&D**
- > Summary and Prospect


Circular Electron Positron Collider (CEPC)

- \Box The CEPC aims to start operation in 2030's, as a Higgs (Z/W) factory in China.
- To run at \sqrt{s} ~ 240 GeV, above the ZH production threshold for ~1M Higgs; at the Z pole for ~Tera Z, at the W+W- pair, and possible $t\bar{t}$ pair production threshold.
- ☐ Higgs, EW, flavor physics & QCD, BSM physics (eg. dark matter, EW phase transition, SUSY, LLP,)
- Possible Super pp Collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

CEPC Major Milestones

CEPC CDR Released (2018.11)

CEPC

Conceptual Design Report

Volume I - Accelerator

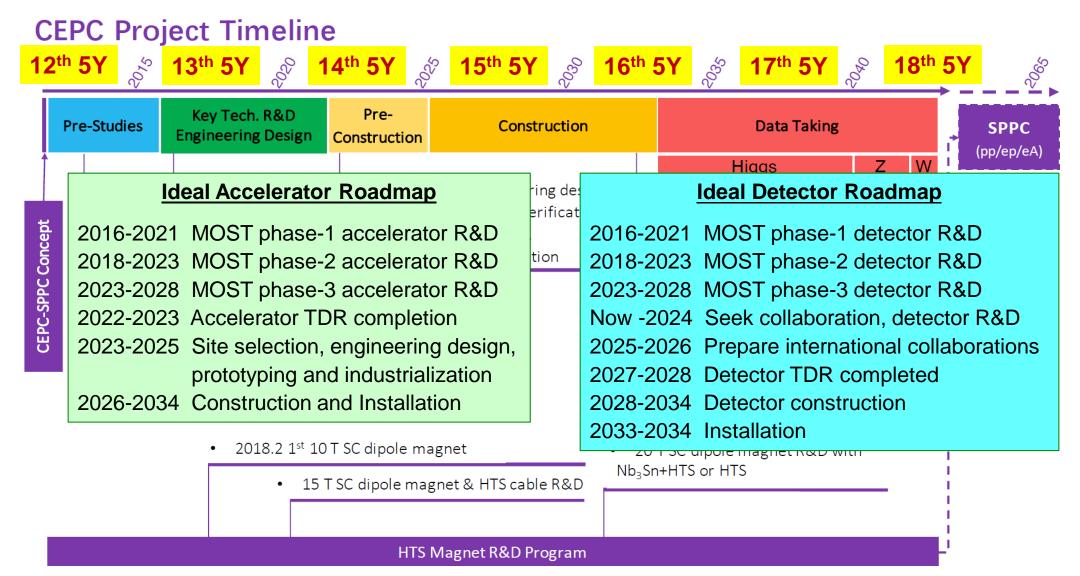
arXiv: 1809.00285

CEPC

Conceptual Design Report

Volume II - Physics & Detector

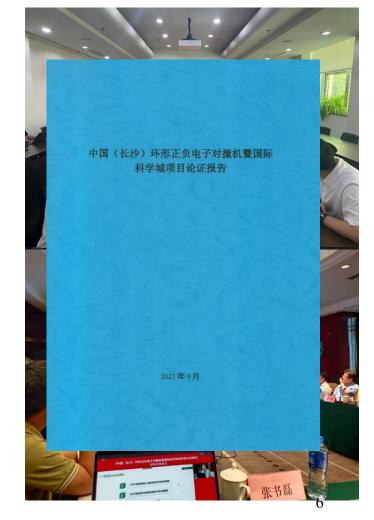
arXiv: 1811.10545


Editorial Team: 43 people / 22 institutions/ 5 countries

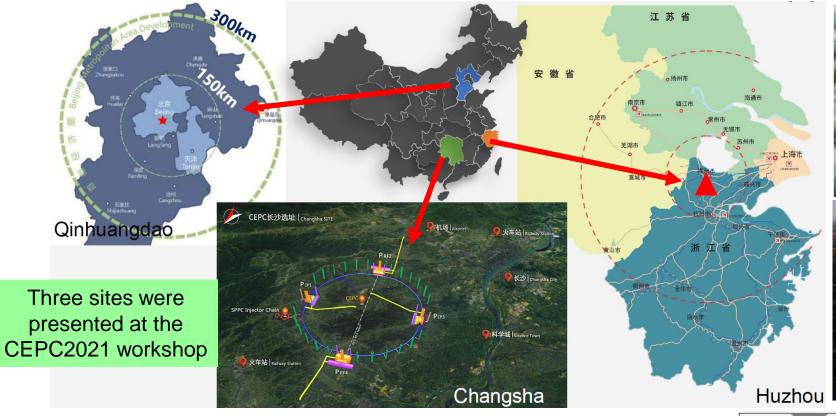
CEPC Roadmap and Schedule (ideal)

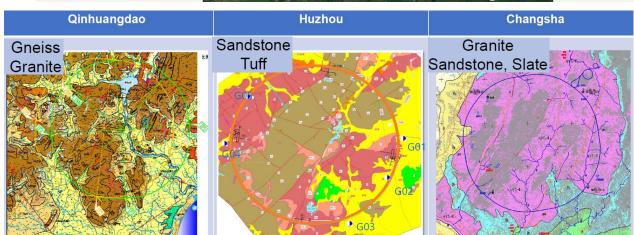
- > 2013-2025: Key technology R&D, from CDR to TDR, Site selection, Intl. Collab. etc.
- ▶ Ideal situation: Approval in the 15th Five-Year Plan, and start construction (~8 years)

CEPC Site Selection

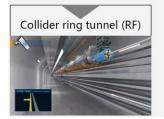


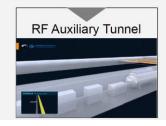
- o July 5, 2021: Changsha Bureau of S&T entrusted Hunan U. to conduct a feasibility study.
- Sept 4, 2021: Hunan U. organized a review meeting by a committee consisting of experts from multiple disciplines which evaluated CEPC for its science, feasibility of a new science city based on CEPC, and overall impact on Changsha. The overall conclusion is very positive. The local government is very interested in and supportive of the CEPC project.

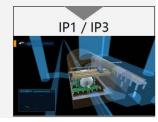

- Site selection is based on geology, electricity supply, transportation, environment for foreigners
- > Local support & economy, ...



Geology of Candidate Sites and Science Cities





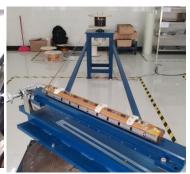


CEPC Financial Model

Funding Sources	Financial Model #1 (RMB)	Financial Model #2 (RMB)
Central Government	30B	6-10B
Local Government	Land, Infrastructure	25-18B Land, Infrastructure
International Partners	1-5B	1-5B
Companies & Donations	0-3B	0-3B
Total Budget	36B	36B

In Oct., 2021: Institute of Science and Technology Strategic Consulting, CAS is carrying out an independent assessment of Social Cost Benefit Analysis for the CEPC project, the report will be available in August, 2022.

CEPC Collaboration with Industry (CIPC)



CERN HL-LHC CCT SC magnet

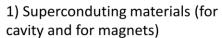
CEPC 650MHz Klystron at Kunshan Co.

CIPC was established in Nov. 2017, there are

70+ companies join the CIPC so far.

CEPC SC QD0 coil winding at KEYE Co.

CEPC long magnet measurement coil

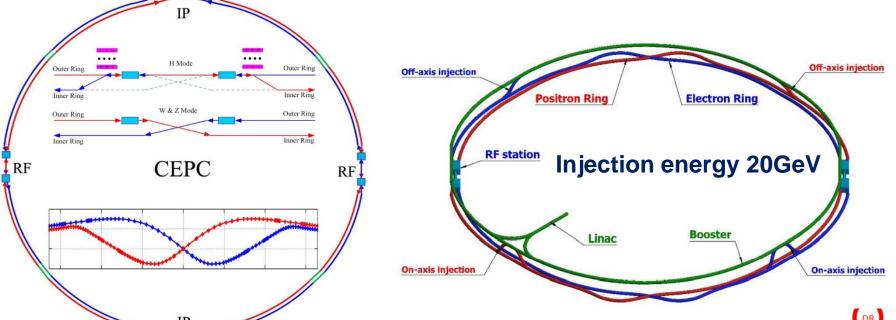


- 2) Superconductiong cavities
- 3) Cryomodules
- 4) Cryogenics
- 5) Klystrons
- 6) Magnet technology
- 7) Vacuum technologies
- 8) Mechanical technologies

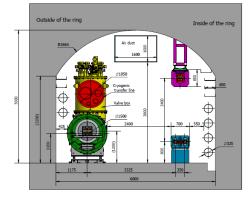
9)Electronics

- 10) SRF
- 11) Power sources
- 12) Civil engineering
- 13) Precise machinery

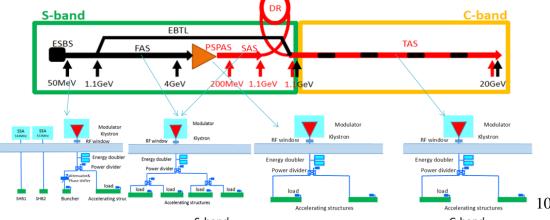
More than 40 companies joined in first phase of CIPC, and 70 companies now.



CEPC High Luminosity TDR Layout



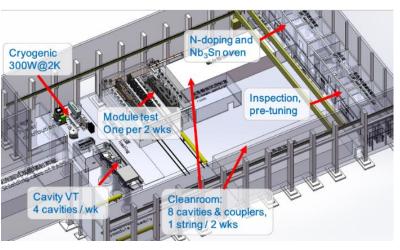
- 100 km double ring design (30 MW SR power, upgradable to 50MW).
- Switchable between H & Z, W modes without hardware change (magnet switch).
- New baseline for Linac (C-band, 20GeV).



<u>ا</u>	1000			1			
R [mm]	800						
ш	600			ECal HC		Yoke/Muon	
	400				cos) =	0.993	
	200 si	FTD					==
	0	-1				QF1	
	-200	حال ا					
	-400	BeamPipe	LumiCal Cryostat	Anti Solenoid		Quadrupoles Shielding	4
	0	1000	2000	3000	4000	5000	6000
						Z	[mm]

TUNNEL CROSS SECTION OF THE ARC AREA

Operation mode		ZH	Z	W ⁺ W ⁻	tt
\sqrt{s} [GeV]		~240	~91.2	158-172	~360
L / IP	CDR (2018)	3	32	10	
[×10 ³⁴ cm ⁻² s ⁻¹]	Latest	5.0	115	16	0.5


CEPC SCRF Test Facility

CEPC SCRF Test Facility is available: Beijing Huairou (4500m²)

New SC Lab Design (4500m²)

SC New Lab is available in 2021

Crygenic system hall in 2020

Vacuum furnace (doping & annealing)

Nb3Sn furnace

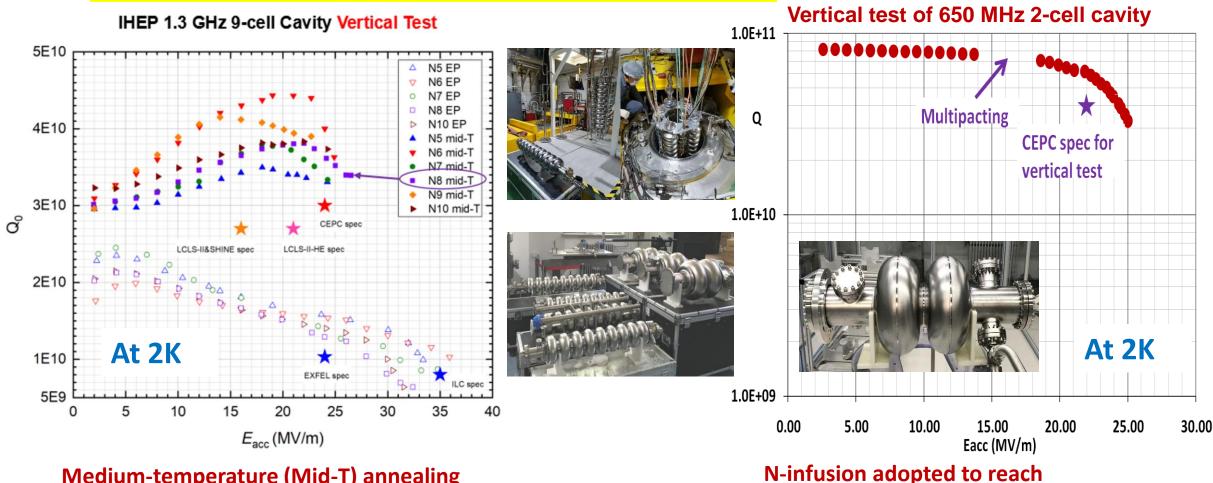
Nb/Cu sputtering device
Cavity inspection camera and grinder 9-cell cavity pre-tuning machine

Temperature & X-ray mapping system

Second sound cavity quench detection system

Helmholtz coil for cavity vertical test

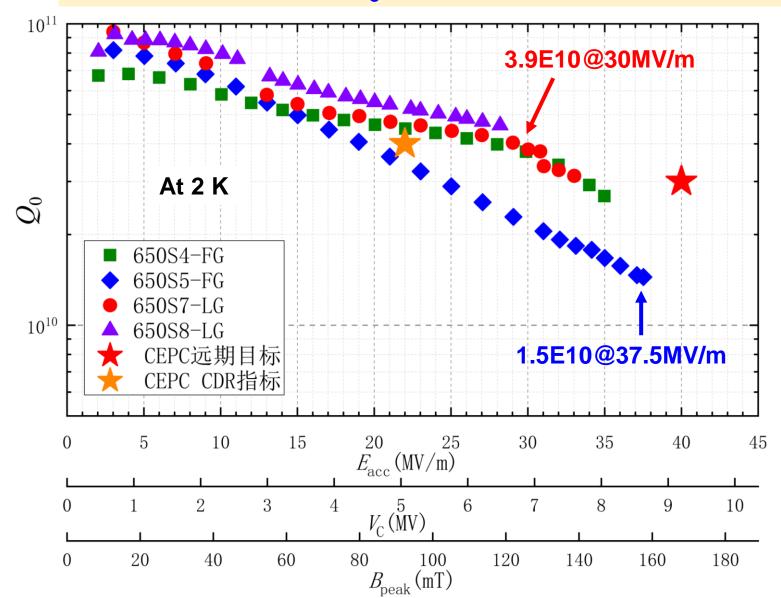
Vertical test dewars


Horizontal test cryostat

CEPC R&D: High Q SCRF Cavities

- \triangleright 1.3 GHz 9-cell SCRF cavity for booster: $Q_0 = 3.4E10 @ 26.5 \text{ MV/m}$
- \triangleright 650 MHz 2-cell SCRF cavity for collider ring: $Q_0 = 6.0E10 @ 22.0 \text{ MV/m}$
- SCRF cavities for both booster & collider ring reach CEPC design goal

Medium-temperature (Mid-T) annealing adopted to reach $Q_0 = 3.4E10 @ 26.5 \text{ MV/m}$


 $Q_0 = 6.0E10 @ 22.0 MV/m$

CEPC R&D: High Q SCRF 650 MHz 1-Cell Cavity

\rightarrow IHEP achieved Q₀=3.9E10@30 MV/m (650MHz 1-cell SCRF Cavity)

CEPC CDR Goal:

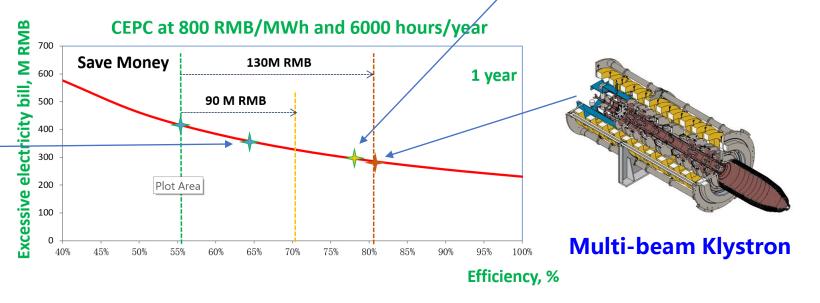
 $Q_0 = 3.0E10 @ 22 MV/m$

Test Results:

 $Q_0 = 3.9E10 @ 30 MV/m$

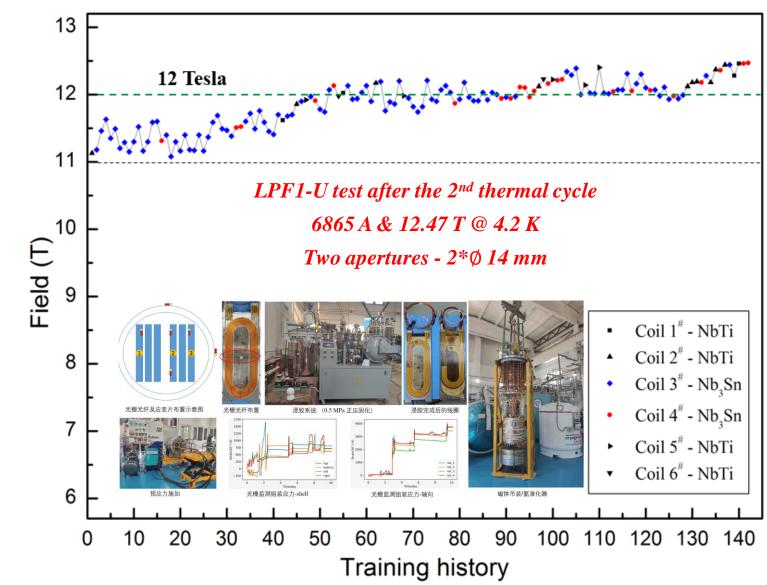
 $Q_0 = 1.5E10 @ 37.5 MV/m$

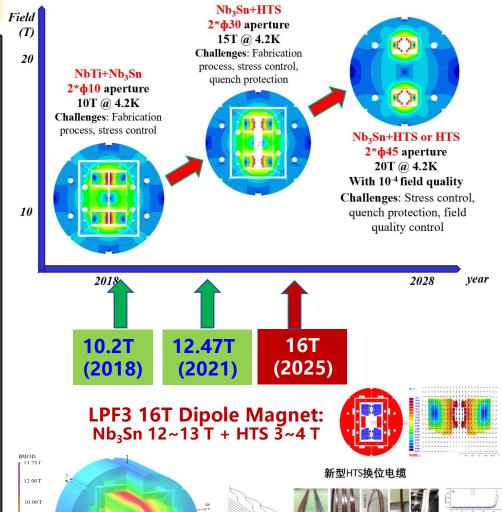
CEPC R&D: High Efficiency Klystrons


- □ The 1st prototype finished fabrication & passed the max. power test. Output power reaches 700 kW in CW mode, 800 kW in pulsed mode. Design efficiency is 65%, achieved efficiency ~ 62%.
- □ The 2nd klystron prototype is manufactured and being baked out, to be tested at PAPS in 2021, design efficiency is ~ 77%.
- □ Multi-beam Klystron design is finished, design efficiency is ~ 80.5%.
- High efficiency Klystron helps to reduce electricity consumption.

The 2nd Klystron (assembly)

The 1st Klystron (tested)


HTS SC Magnet (>12T)


4.00 T

2.00 T

Domestic SC dipole magnet exceeded 12T (IHEP, June, 2021)

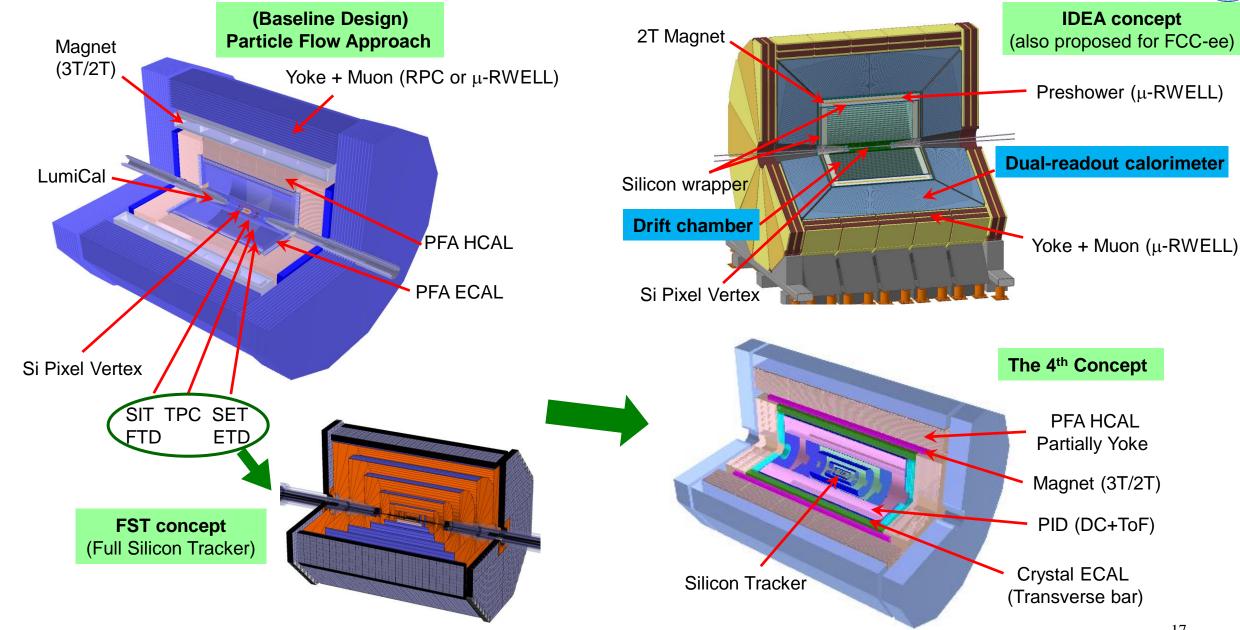
CEPC Physics Program (White Papers)

Operation mode		ZH	Z	W ⁺ W ⁻	ttbar (new)
	\sqrt{s} [GeV]	~ 240	~ 91.2	~ 160	~ 360
F	Run time [years]	7	2	1	~7.7
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	
CDR	$\int L \ dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	15.4	0.5
Latest	$\int L \ dt$ [ab ⁻¹ , 2 IPs]	9.3	57.5	4.0	1.0
	Event yields [2 IPs]	1.7×10 ⁶	2.5×10 ¹²	3×10 ⁷	3×10 ⁵

The large samples: ~10⁶ Higgs, ~10¹² Z, ~10⁸ W bosons

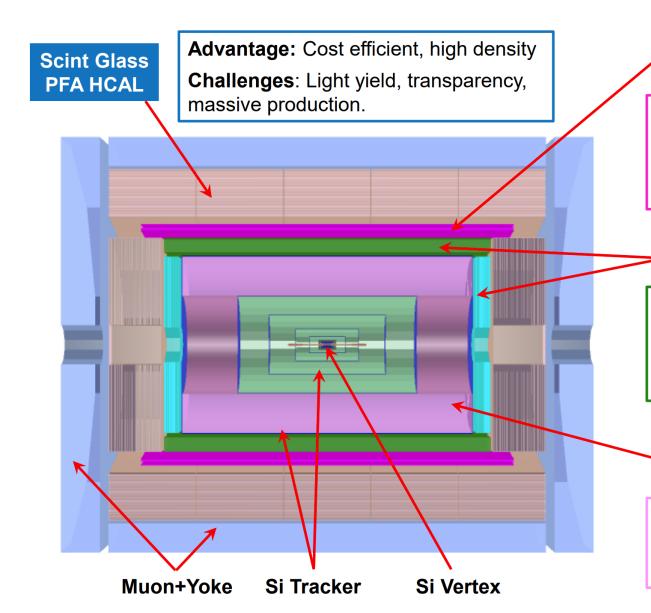
Physics similar to FCC-ee, ILC, CLIC

- 2019.3 Higgs White Paper published (CPC V43, No. 4 (2019) 043002)
- 2019.7 Workshop@PKU: EW, Flavor, QCD working groups formed
- ❖ 2020.1 Workshop@HKUST-IAS: Review progress, EW draft ready
- 2021.4 Workshop@Yangzhou: BSM working group formed



More details about CEPC Physics Program Higgs (Yaquan Fang), EW (Zhijun Liang) QCD (Huaxing Zhu), Flavor (Lingfeng Li) BSM (Yang Zhang) presented at CLHCP2021

Conceptual Detector Designs



The 4th Conceptual Detector Design

Solenoid Magnet (3T / 2T)
Between HCAL & ECAL

Advantage: the HCAL absorbers act as part of the magnet return yoke.

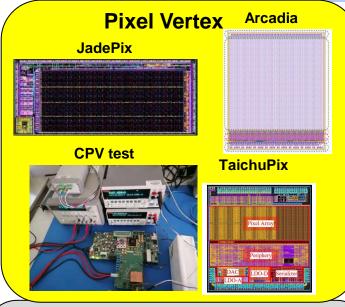
Challenges: thin enough not to affect the jet resolution (e.g. BMR); stability.

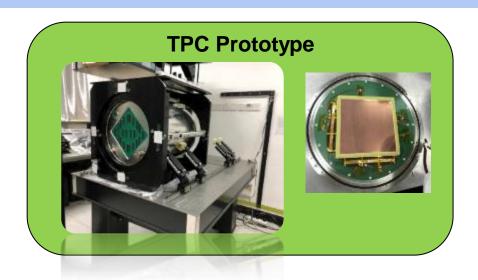
Transverse Crystal bar ECAL

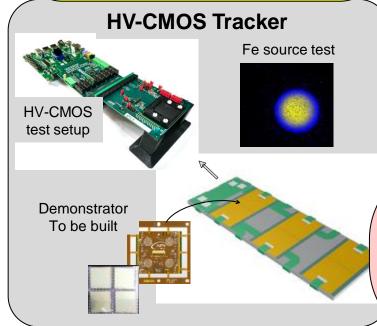
Advantage: better π^0/γ reconstruction.

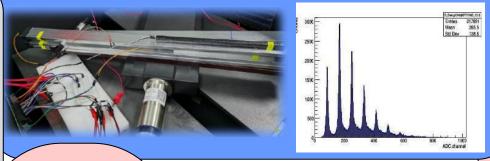
Challenges: minimum number of readout channels; compatible with PFA calorimeter; maintain good jet resolution.

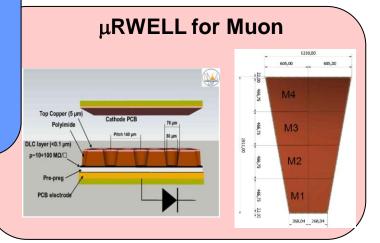
A Drift chamber that is optimized for PID


Advantage: Work at high luminosity Z runs


Challenges: sufficient PID power; thin enough not to affect the moment resolution.


Selection of Detector R&D

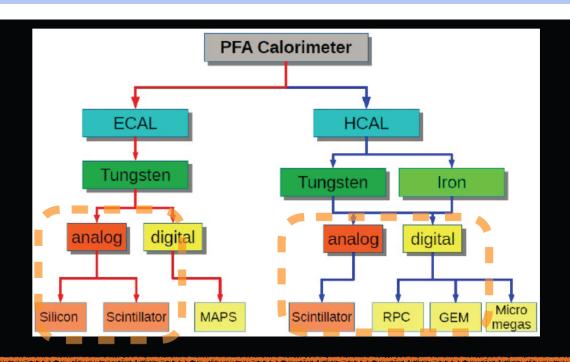



Scintillator Bar Muon

LGAD ToF

Beampipe Design

CEPC R&D: PFA Calorimeters



Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and IHEP seed funding

Electromagnetic

ECAL with **Silicon** and **Tungsten** (LLR, France)

ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

Highlon

SDHCAL with **RPC** and Stainless Steel (SJTU + IPNL, France)

SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC)

HCAL with Scintillator+SiPM and Stainless Steel (IHEP + USTC + SJTU)

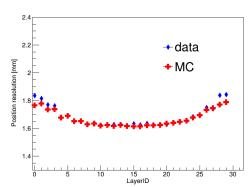
Hewel ns

Some longitudinal granularity

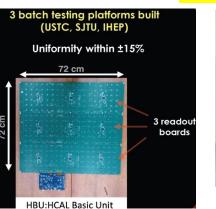
Hadronic

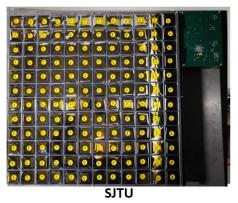
Crystal Calorimeter (LYSO:Ce + PbWO)

Dual readout calorimeters (INFN, Italy + Iowa, USA) — RD52



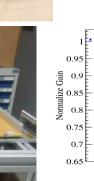
Selection of Detector R&D

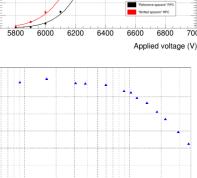

ScW ECAL Prototype



SCEPCAL

Sct+SiPM+Fe AHCAL Prototype


IHEP


Dual Readout CAL

GRPC and RWELL for SDHCAL

RWEL

CEPC Newsletters (quarterly)

International Efforts

- **❖** The 7th annual IAC meeting was held on Nov 1-5, 2021.
- ❖International Accelerator Review Committee (IARC), and International Detector R&D Review Committee (IDRDRC) started operating in 2019.
- ❖ Currently the CEPC study group consists of ~1/3 international members. By year 2025-26, two international experiment collaborations should be formed.
- ❖ International collaborating R&D through different channels, including CALICE, LCTPC, RD*, ...
- The R&D research are supported by MOST, NSFC, CAS, institutes, local government, ...

International workshops (with emphasis on CEPC):

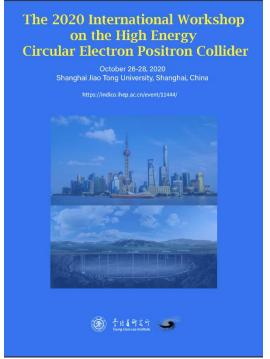
In China: Beijing (2017.11, 2018.11, 2019.11), Shanghai (2020.10 / hybrid),

Nanjing (2021.11 / online, ~2022.11)

Annual HKUST-IAS HEP program (since 2015)

In Europe: Rome (2018.05), Oxford (2019.04), Marseille (~2022.05)

In USA: Chicago (2019.09), DC (2020.04 / online)

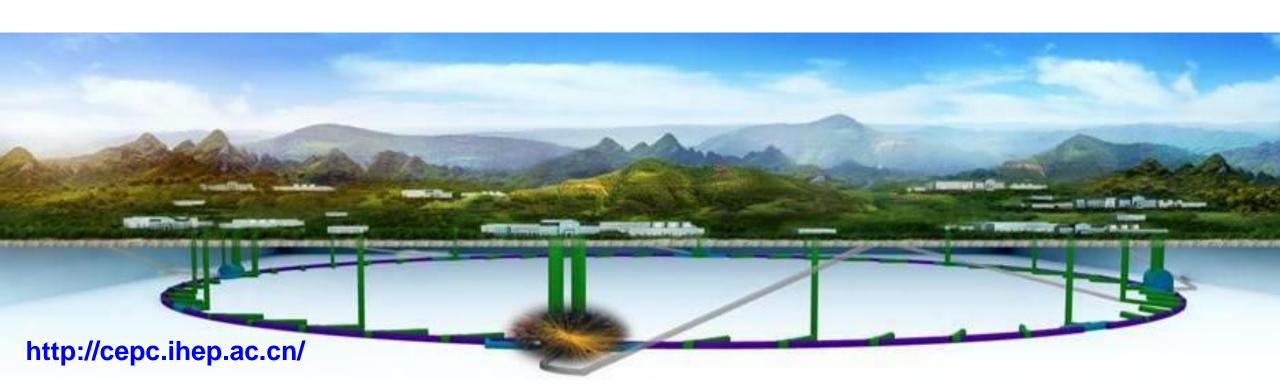

Recent CEPC Workshops

CEPC 2021 International Workshop

https://indico.ihep.ac.cn/event/14938/ (Online, Nanjing U.)

Sessions	Plenary	Accelerator	Detector	Physics	Software	CIPC	Total
# of talks	12	53	44	50	24	26	209
# of talks (Intl.)	8	11	27	22	11	0	79

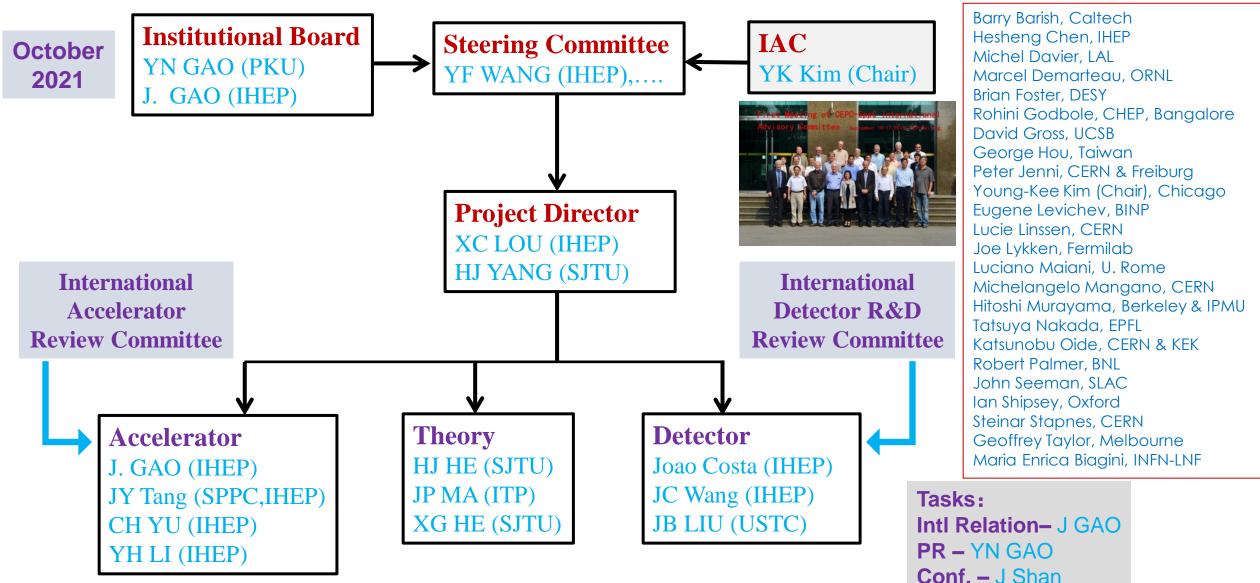
Summary and Prospects


Continuing R&D and deep understanding of physics potentials

- Made suggestions to MOST for R&D support and validations of key technologies & innovations
- Carrying out design improvement, R&D, site investigations-study
- R&D and made major progress + breakthroughs in common technologies
- CEPC physics whitepapers; physics potentials in Snowmass 2021/2022

International Collaboration and Engagement

- Engaging actively in ILC, FCC as well as HL-LHC upgrade activities, enhancing CERN-China relationship
- Actively participating international detector R&D collaborations: CALICE, LPTPC, RD*, ...
- Finding and sharing solutions to common issues (design, accelerator/detector components, ...)
- Hope to have in-person meeting and collaboration in the near future ...


Thank you!

Current CEPC Organization (only for Chinese)

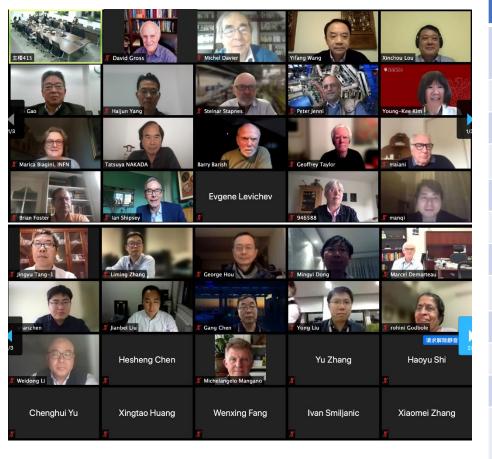
TDR - XC Lou et al.

IARC and IDRDC

International Accelerator Review Committee

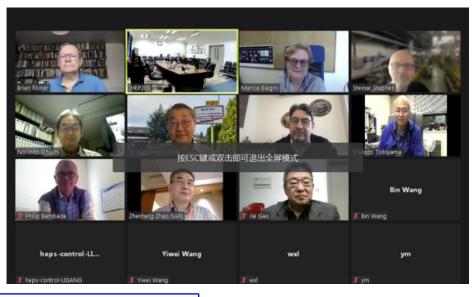
- Phillip Bambade, LAL
- Marica Enrica Biagini (Chair), INFN
- Brian Foster, DESY/U.Hamburg & Oxford U
- In-Soo Ko, POSTTECH
- Eugene Levichev, BINP
- Katsunobu Oide, CERN & KEK
- Anatolii Sidorin, JINR
- Steinar Stapnes, CERN
- Makoto Tobiyama, KEK
- Zhentang Zhao, SINAP
- Norihito Ohuchi, KEK
- Carlo Pagani, INFN-Milano

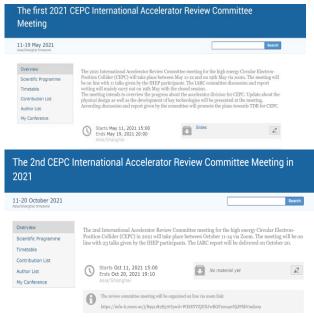
International Detector R&D Review Committee


- Jim Brau, USA, Oregon
- Valter Bonvicini, Italy, Trieste
- Ariella Cattai, CERN, CERN
- Cristinel Diaconu, France, Marseille
- Brian Foster, UK, Oxford
- Liang Han, China, USTC
- Dave Newbold, UK, RAL (chair)
- Andreas Schopper, CERN, CERN
- Abe Seiden, USA, UCSC
- Laurent Serin, France, LAL
- Steinar Stapnes, CERN, CERN
- Roberto Tenchini, Italy, INFN
- Ivan Villa Alvarez, Spain, Santader
- Hitoshi Yamamoto, Japan, Tohoku

The 7th CEPC IAC Meeting

- > The 7th CEPC IAC meeting (online) was held on November 1-3, 2021
- Nine talks about CEPC overall progress & technical details, with discussion sessions
- > The IAC presented an advisory report with many recommendations on Nov. 5, 2021


Date and Time	Topics	Speaker
Nov. 1, 20:10 – 20:55	Overview of the CEPC Project and Implementation of 2020 IAC Recommendations	Haijun Yang
Nov. 1, 20:55 – 21:45	CEPC Accelerator	Jie Gao
Nov. 1, 22:00 – 22:45	CEPC Detector R&D, Collaboration and Future	Joao Costa
	IAC Accelerator Group	
Nov. 2, 20:00 – 20:25	SppC Accelerator: HTS progress	Qingjin Xu
Nov. 2, 20:25 – 21:20	IARC Recommendation and Plan	Yuhui Li
Nov. 2, 21:20 – 21:55	Sites and Civil Engineering	Yu Xiao
	IAC Detector Group	
Nov. 2, 20:00 – 20:50	4 th Detector Concept and Validation	Jianchun Wang
Nov. 2, 20:50 – 21:35	Physics and White Papers	Yaquan Fang
Nov. 2, 21:35 – 22:00	Software Development	Weidong Li
Nov. 3, 20:00 – 22:00	Discussions sessions (Management, Accelerator, Detector)	



CEPC Accelerator R&D: IARC Meetings

- ➤ In 2021, two online International Accelerator Review Committee (IARC) meetings took place,
 - May (11 talks)
 - October (22 talks)
- IARC delivered two dedicated review reports

The 2021 CEPC International Accelerator Review
Committee

Review Report

May 19, 2021

Overview

The CEPC International Accelerator Review Committee was held remotely due to the Covid-19 pandemic on May 11th and 12th 2021. This is the second IARC meeting.

The Circular Electron Positron Collider (CEPC+SppC) Study Group, currently hosted by the Institute of High Energy Physics of the Chinese Academy of Sciences, completed the conceptual design of the CEPC accelerator in 2018. As recommended by the CEPC International Advisory Committee (IAC), the group began the Technical Design Report phase for the CEPC accelerator in 2019, with a completion target year of 2022. Meanwhile an International Accelerator Review Committee (IARC) has been established to advise on all matters related to CEPC accelerator design, the R&D program, the study of the machine-detector interface region, and the compatibility with an upgrade to the t-tbar energy region, as well as with a future SppC. The first IARC meeting took place in Beijing during the CEPC international workshop on Nov. 18-21, 2019.

2021 Second CEPC IARC Meeting

IARC Committee

October 20th, 2021

The Circular Electron Positron Collider (CEPC) and Super Proton-Proton Collider (SppC) Study Group, currently hosted by the Institute of High Energy Physics of the Chinese Academy of Sciences, completed the conceptual design of the CEPC accelerator in 2018. As recommended by the CEPC International Advisory Committee (IAC), the group began the Technical Design Report (TDR) phase for the CEPC accelerator in 2019, with a completion target year of 2022. Meanwhile an International Accelerator Review Committee (IARC) has been established to advise on all matters related to CEPC accelerator design, the R&D program, the study of the machine-detector interface region, and the compatibility with an upgrade to the t-tbar energy region, as well as with a future SppC.

The second 2021 CEPC International Accelerator Review Committee was held remotely due to the Covid-19 pandemic on October 11th to 14th 2021. A total of 22 talks were presented on a variety of topics.

1 General comments

The Committee congratulates the CEPC team for the work performed in the last months and presented at this meeting. In particular, the progress on the R&D of the hardware components looks very promising. The team has updated the table of parameters for the high-luminosity running, as well as the lattices and components for all accelerator systems: sources, Linac, Booster and Collidor

May, 2021: https://indico.ihep.ac.cn/event/14295

October, 2021: https://indico.ihep.ac.cn/event/15177

➤ IARC provides positive feedbacks, reminds missing studies & inconsistency, stressing the difficulties of key prototypes, it helps to make CEPC accelerator design a credible and feasible scheme.

CEPC Accelerator TDR Design Improvement

	Higgs	W	Z (3T)	Z (2T)
Number of IPs	11155	2	2 (51)	2 (21)
Beam energy (GeV)	120	80	4	5.5
Circumference (km)	120	100		3.5
Synchrotron radiation				
loss/turn (GeV)	1.73	0.34	0.	036
Crossing angle at IP (mrad)		16.5 × 2	2	
Piwinski angle	3.48	7.0	2	3.8
Particles /bunch N _e (10 ¹⁰)	15.0	12.0	8	3.0
Bunch number	242	1524	12000 (10% gap)
Bunch spacing (ns)	680	210		25
Beam current (mA)	17.4	87.9	40	51.0
Synch. radiation power (MW)	30	30	1	6.5
Bending radius (km)		10.7		
Momentum compaction (10 ⁻⁵)		1.11		
$β$ function at IP $β_x*/β_y*(m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001
Emittance x/y (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016
Beam size at IP $\sigma_x/\sigma_y(\mu m)$	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04
Beam-beam parameters ξ _x /ξ _y	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079
RF voltage $V_{RF}(GV)$	2.17	0.47	0	.10
RF frequency f _{RF} (MHz)	650			
Harmonic number	216816 2.72 2.98 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7			
Natural bunch length σ_z (mm)	2.72	2.98	-ciC	in —
Bunch length σ _z (mm)	4.4		ייכפנ:	
Damping time $\tau_x/\tau_y/\tau_E$ (ms)	AR	aline.	o 4 9.5/84	19.5/425.0
Natural Chromaticity	n Ba>	1101	-491/-1161	-513/-1594
Betatro	K	363.10 / 36	5.22	
s 2018 C	0.065	0.040	0.	028
H (2 cell)	0.46	0.75	1	.94
Natural energy spread (%)	0.100	0.066	0.	038
Energy spread (%)	0.134	0.098	0.	080
Energy acceptance	1.35	0.90	^	.49
requirement (%)	1.55	0.90	U	.49
Energy acceptance by RF (%)	2.06	1.47	1.70	
Photon number due to beamstrahlung	0.082	0.050	0.	023
Beamstruhlung lifetime /quantum lifetime† (min)	80/80	>400		
Lifetime (hour)	0.43	1.4	4.6	2.5
F (hour glass)	0.80	0.94	0	.99
Luminosity/IP (10 ³⁴ cm ⁻² s ⁻¹)	(3)	10	17	(32)

	(ttbar)	Higgs	W	Z
Number of Ips	(tibal)	2	**	L
Circumference [km]		100.0		
SR power per beam [MW]		30		
Half crossing angle at IP [mrad]		16.5	5	
Bending radius [km]		10.7	7	
Energy [GeV]	180	120	80	45.5
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037
Piwinski angle	1.21	5.94	6.08	24.68
Bunch number	35	249	1297	11951
Bunch population [10^10]	20	14	13.5	14
Beam current [mA]	3.3	16.7	84.1	803.5
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	27/1.4
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	0.87/1.7 ed Desi 0.07/0.14 1.2/2.5	(35)
Bunch length (SR/total) [mm]	2.2/2.9	2212	red Des	2.5/8.7
Energy spread (SR/total) [%]	0.15/0.20	1 Improv	v.07/0.14	0.04/0.13
Energy acceptance (DA/RF) [%]	2.3 202	2.01Z.2	1.2/2.5	1.3/1.7
Beam-beam parameters (ksix/ksiy)	0.071	0.015/0.11	0.012/0.113	0.004/0.127
RF voltage [GV]	10	2.2	0.7	0.12
RF frequency [MHz]	650	650	650	650
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202
Beam lifetime [min]	18	12.3	55	80
Hour glass Factor	0.89	0.9	0.9	0.97
Luminosity per IP[1e34/cm^2/s]	0.5	5.0	16	(115)

include beam-beam simulation and real lattice

67%1

259%1

CEPC Accelerator Design Improvement

→ High luminosities at H and Z factories

- Optimization of parameters, improving dynamic aperture(DA) to include errors and more effects
- New lattice for high luminosity at Higgs
- New RF section layout
- More detailed study of MDI
- Optimization of the booster design and magnets
- A new alternative design of the LINAC injector
- A new plasma injector design
- Injection design
-

Accelerator Review Committee

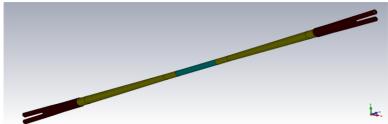
- Recommended by the IAC, established & met in November, 2019
- Two IARC meeting held in 2021

CDR scheme (Higgs)

✓ L*=2.2m, θ c=33mrad, β x*=0.36m, β y*=1.5mm, Emittance=1.2nm

- Strength requirements of anti-solenoids (peak field $B_z \sim 7.2T$)
- Two-in-one type SC quadrupole coils (Peak field 3.8T & 136T/m)

High luminosity scheme (Higgs) ✓ L*=1.9m, θc=33mrad, βx*=0.33m, βy*=1.0mm, Emittance=0.68nm

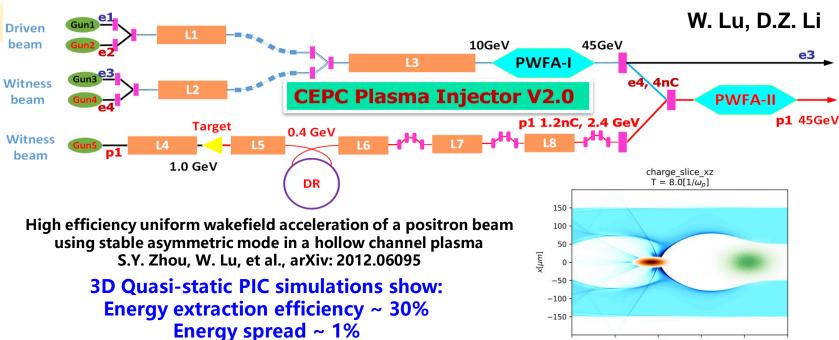

- Strength requirements of anti-solenoids (peak field $B_z \sim 7.2T$)
- Two-in-one type SC quadrupole coils (Peak field 3.8T & 141T/m) with room temperature vacuum chamber & Iron yoke

CDR Change of IP chamber High luminosity

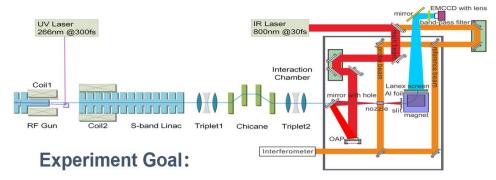
Be pipe: 28mm, SCQ Beam pipe:20mm

125 200 750 830 980 1110

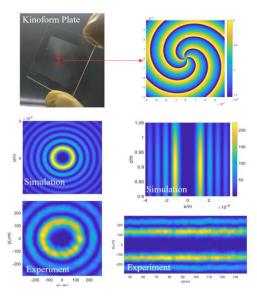
Be pipe: 28mm, Beam pipe:17mm

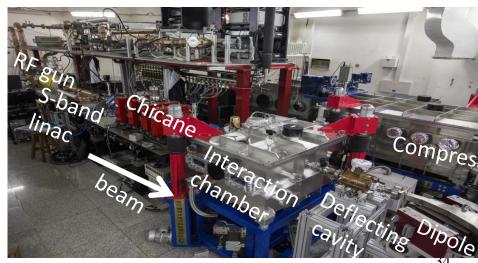


CEPC Accelerator: Plasma Injector



CEPC Plasma Injector V2.0 IHEP, THU, BNU


Booster Requirement					
Energy (GeV)	45.5				
Bunch Charge (nC)	0.78				
Bunch length (um)	<3000				
Energy Spread (%)	0.2				
ε _N (μm·rad)	<800				
Bunch Size (um)	<2000				



Plasma dechirper exp at SXFEL

- 1. Decrease the energy spread from 1% to 0.1%
- 2. Study Hollow channel impact on beam quality

CEPC Study for Snowmass: Physics

HD 46,1 🛜	ॐ 🔻 🌣 49% 🔳 11:53
く 聊天信息(121)	

WG	Lol
FF04	Higgs boson CP properties at CEPC
EF01	Measurement of branching fractions of Higgs hadronic decays
FF00	Study of Electroweak Phase Transition in Exotic Higgs Decays with CEPC Detector Simulation
EF02	Complementary Heavy neutrino search in Rare Higgs Decays
	Feasibility study of CP-violating Phase φs measurement via Bs → J/Ψφ channel at CEPC
EF03	Probing top quark FCNC couplings tq\gamma, tqZ at future e+e- collider
	Searching for Bs → φ vv and other b → svv processes at CEPC
	Measurement of the leptonic effective weak mixing angle at CEPC
EF04	Probing new physics with the measurements of e+e- → W+W- at CEPC with optimal observables
	NNLO electroweak correction to Higgs and Z associated production at future Higgs factory
EF05-07	Exlusive Z decays
FF00	SUSY global fits with future colliders using GAMBIT
EF08	Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC
	Search for t + j + MET signals from dark matter models at future e+e- collider
FF00 40	Search for Asymmetric Dark Matter model at CEPC by displaced lepton jets
EF09-10	Dark Matter via Higgs portal at CEPC
	Lepton portal dark matter, gravitational waves and collider phenomenology

CEPC Study for Snowmass: Detector R&D

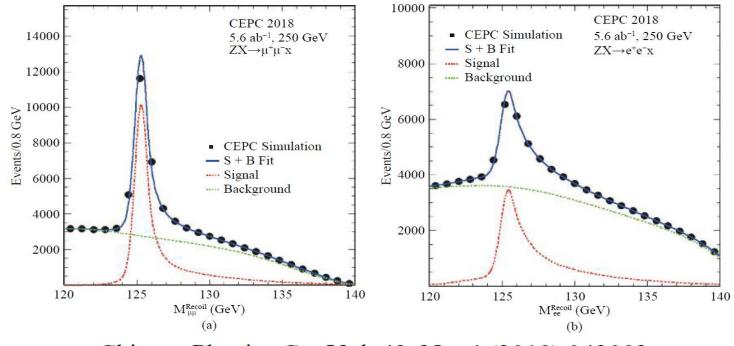
Snowmass — Letters of Intent

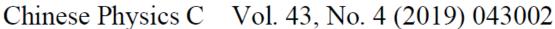
14 CEPC-Related Detector Lol submitted

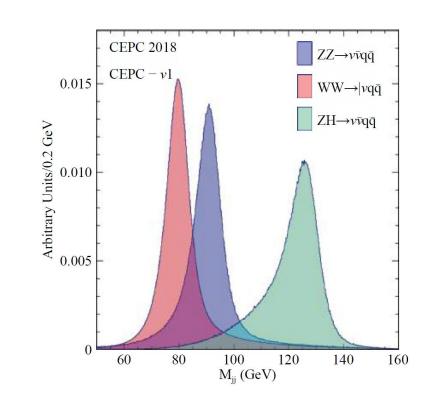
https://indico.ihep.ac.cn/event/12410/

Detec	tor R&D
Conve	ners: Joao Guimaraes Costa, WANG Jianchun, Mr. Manqi Ruan (IHEP)
15:00	CEPC Detectors Overview LoI 1'
	CEPC Detector Overview LOI SNOWMASS21-EF1_EF4-IF9_IF0-260.pdf
	Speakers: Joao Guimaraes Costa, Mr. Manqi Ruan (IHEP), WANG Jianchun
	Material: Paper 🕜 Slides 📆
15:02	IDEA Concept 1'
	Speaker: Franco Bedeschi (INFN-Pisa)
	Material: Paper 🕝
15:03	Dual Readout Calorimeter 1'
	Speaker: Roberto Ferrari (INFN)
	Material: Paper 🕑
15:04	Drift Chamber 1'
	Speaker: Franco Grancagnolo
	Material: Paper 🕑
15:06	mu-RWELL (muons, preshower) 1'
	Speaker: Paolo Giacomelli (INFN-Bo)
	Material: Paper 🕝
15:08	Time Detector LoI 1'
	Speaker: Prof. Zhijun Liang (IHEP)
	Material: Slides 📆
15:09	Key4hep 1'
	Speakers: Dr. Weidong Li (高能所), Dr. Tao LIN (高能所), Prof. Xingtao Huang (Shandong University), Wenxing Fang (Beihang University)
	Material: Slides 🔁

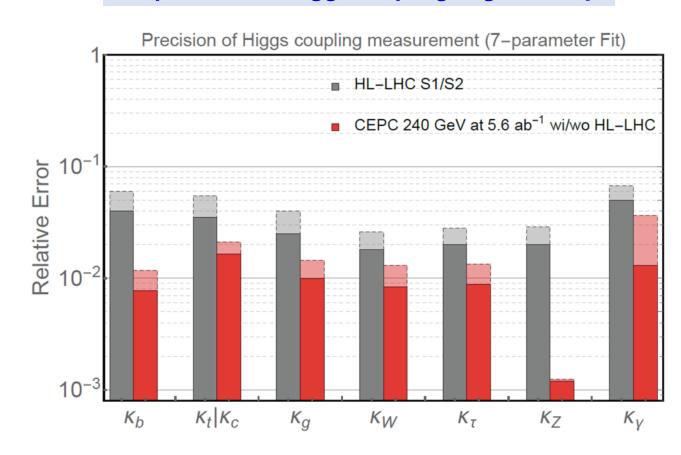
15:10	PFA Calorimeter 1'
	Speakers: Haijun Yang (Shanghai Jiao Tong University), Dr. Jianbei Liu (University of Science and Technology of China), Dr. Yong Liu (Institute of High Energy Physics)
	Material: Slides 📆
15:11	High Granularity Crystal Calorimeter 1'
	Speaker: Dr. Yong Liu (Institute of High Energy Physics)
	Material: Paper 🗗 Slides 📆
15:12	Muon Scintillator Detector 1'
	Speaker: Dr. Xiaolong Wang (Institute of Modern Physics, Fudan University)
	Material: document 📆
15:13	Vertex LoI 1'
	Speaker: Prof. Zhijun Liang (IHEP)
	Material: Slides 🔁
15:15	MDI LoI 1'
	Speaker: Dr. Hongbo ZHU (IHEP)
	Material: Slides 📆
15:16	TPC LoI 1'
	Speaker: Dr. Huirong Qi (Institute of High Energy Physics, CAS)
	Material: Slides 🔁
15:17	Solenoid R&D LoI 1'
	Speaker: Dr. Feipeng NING (IHEP)
	Material: Slides 📆


CEPC Physics Performance (CDR)

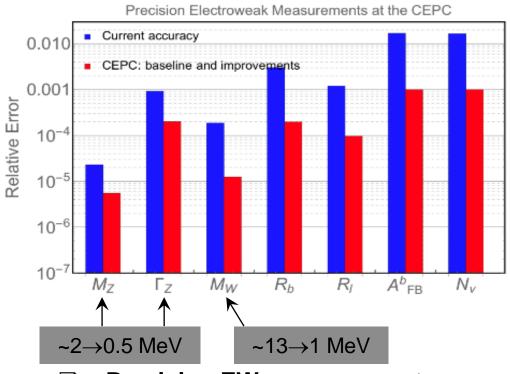



e⁺e⁻ annihilations at the CEPC

- CEPC can make detailed study of various physics processes
- Higgs bosons are detected via recoil mass of the reconstructed Z, allowing for model independent & full investigation of the Higgs and any new physics that Higgs may reveal
- Very challenging events with missing neutrinos and jets are well reconstructed and identified



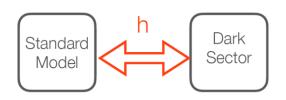
CEPC Physics Performance (CDR)


Order of magnitude improvement in precision ⇒ Unknown / discoveries

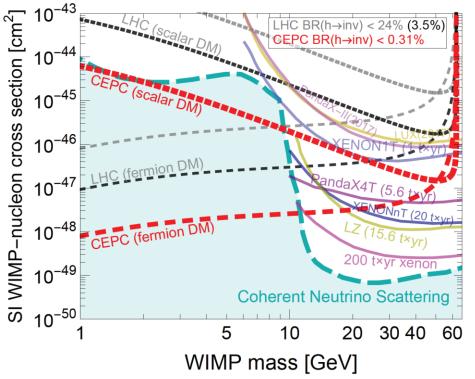
Compare to the HL-LHC, CEPC can improve the precision of Higgs couplings significantly

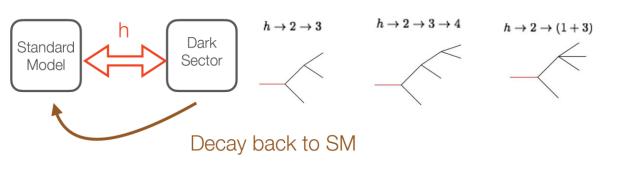
Chinese Physics C Vol. 43, No. 4 (2019) 043002

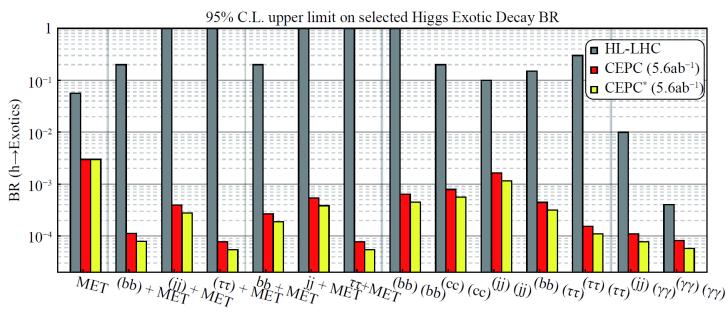
CEPC can improve the precision of the EW parameters by a factor of ~ 5-10



- □ Precision EW measurements,
- ☐ Flavor physics (b, c, tau),
- ☐ Study of QCD,
- □ Probe physics BSM.

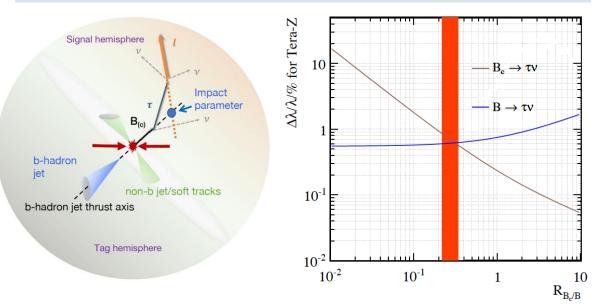



Discovery Potential for New Physics



$$h \to X_{\rm dm} X_{\rm dm}$$

Higgs decays into BSM particles, $H \rightarrow X_1 X_2$


CEPC has significantly better detection sensitivity for dark matter and selected Higgs exotic decays than HL-LHC

CEPC Flavor Physics

Analysis of $B_c \rightarrow \tau \nu_{\tau}$ at CEPC \rightarrow |Vcb|~O(1%) T. Zheng et.al., CPC 45, No. 2 (2021)

Chinese Physics C Vol. 45, No. 2 (2021)

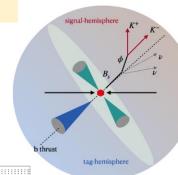
Analysis of $B_c \to \tau v_\tau$ at CEPC*

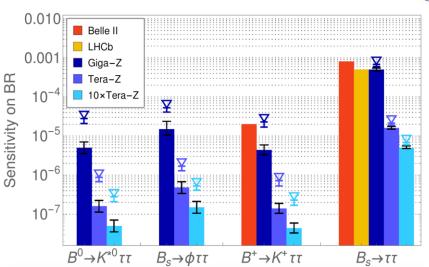
Taifan Zheng(郑太范)¹ Ji Xu(徐吉)² Lu Cao(曹璐)³ Dan Yu(于丹)⁴ Wei Wang(王伟)² Soeren Prell⁵ Yeuk-Kwan E. Cheung(张若筠)¹ Manqi Ruan(阮曼奇)^{4†}

¹School of Physics, Nanjing University, Nanjing 210023, China
²INPAC, SKLPPC, MOE KLPPC, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
³Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
⁴Institute of High Energy Physics, Beijing 100049, China
⁵Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Abstract: Precise determination of the $B_c \to \tau \nu_\tau$ branching ratio provides an advantageous opportunity for understanding the electroweak structure of the Standard Model, measuring the CKM matrix element $|V_{cb}|$, and probing new physics models. In this paper, we discuss the potential of measuring the process $B_c \to \tau \nu_\tau$ with τ decaying leptonically at the proposed Circular Electron Positron Collider (CEPC). We conclude that during the Z pole operation, the channel signal can achieve five- σ significance with $\sim 10^9$ Z decays, and the signal strength accuracies for $B_c \to \tau \nu_\tau$ can reach around 1% level at the nominal CEPC Z pole statistics of one trillion Z decays, assuming the total $B_c \to \tau \nu_\tau$ yield is 3.6×10^6 . Our theoretical analysis indicates the accuracy could provide a strong constraint on the general effective Hamiltonian for the $b \to c\tau \nu$ transition. If the total B_c yield can be determined to O(1%) level of accuracy in the future, these results also imply $|V_{cb}|$ could be measured up to O(1%) level of accuracy.

Test of Lepton-Flavor-Universality (LFU) L.F. Li, T. Liu, JHEP 06 (2021) 064

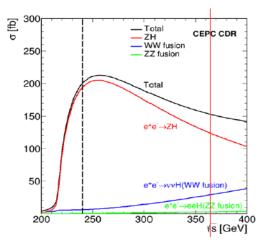

	Experimental	SM Prediction
R_K	$0.745^{+0.090}_{-0.074} \pm 0.036$	1.00 ± 0.01 [4]
R_{K^*}	$0.69^{+0.12}_{-0.09}$	0.996 ± 0.002 [5]
R_D	0.340 ± 0.030	0.299 ± 0.003
R_{D^*}	0.295 ± 0.014	0.258 ± 0.005

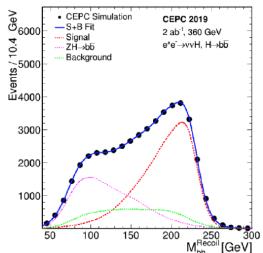

 R_{K^*} & R_{D^*} anomalies at level of 2-3 σ .

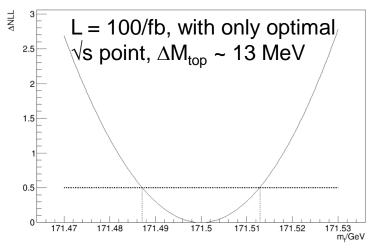
$$R_{K^{(*)}} \equiv \frac{\text{BR}(B \to K^{(*)}\mu^+\mu^-)}{\text{BR}(B \to K^{(*)}e^+e^-)}$$

b \rightarrow s $\tau^+\tau^-$ is motivated to address LFU violating puzzle involving 3rd generation lepton directly.

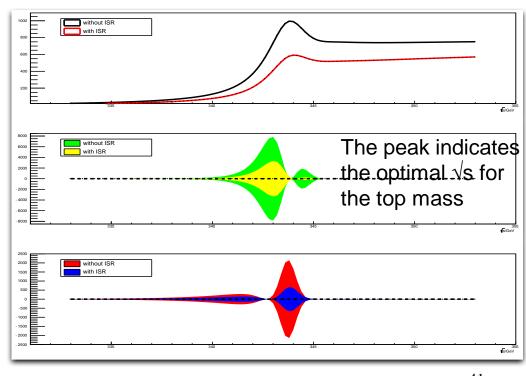
Channel	SM prediction for BR
$B^0 \to K^{*0} \tau^+ \tau^-$	$(0.98 \pm 0.10) \times 10^{-7} [11]$
$B_s \to \phi \tau^+ \tau^-$	$(0.86 \pm 0.06) \times 10^{-7}$ [11]
$B^+ \to K^+ \tau^+ \tau^-$	$(1.20 \pm 0.12) \times 10^{-7}$ [11]
$B_s \to \tau^+ \tau^-$	$(7.73 \pm 0.49) \times 10^{-7}$ [12]




CEPC Physics at 360 GeV

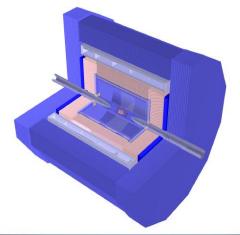


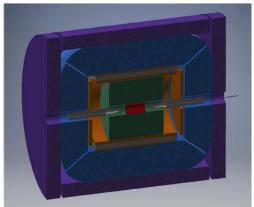
- 360 GeV run provides critical inputs from the WWfusion Higgs productions
- Useful for measuring κ_W , κ_Z , Γ_h , Global EFT fit
- With 2 ab⁻¹, H width precision ~ 1.4% (x2 improvement)

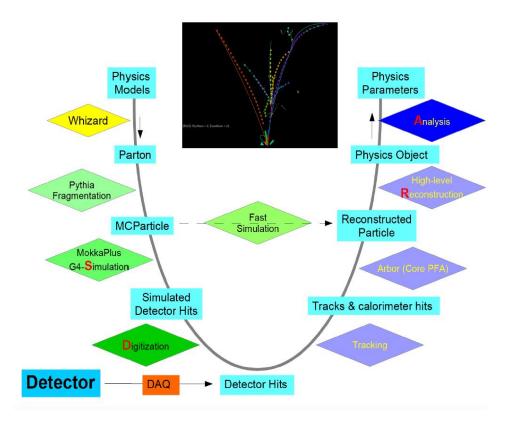


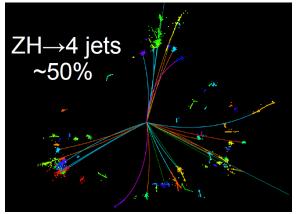
	240GeV, 5.6ab ⁻¹	360GeV, 2ab ⁻¹	
	ZH	ZH	₩H
any	0.50%	1%	١
H → bb	0.27%	0.63%	0.76%
H → cc	3.3%	6.2%	11%
$H \rightarrow gg$	1.3%	2.4%	3.2%
$H \rightarrow WW$	1.0%	2.0%	3.1%
$H \rightarrow ZZ$	7.9%	14%	15%
$H \rightarrow \tau \tau$	0.8%	1.5%	3%
$H \rightarrow \gamma \gamma$	5.7%	8%	11%
$H \rightarrow \mu\mu$	12%	29%	40%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	١
Width	2.8%	1.4%	

- Currently we study the top mass and width using tt threshold method:
 - One order of magnitude better precision than the LHC is expected
 - A quick energy scan with low lumi to find the optimal energy point before data taking with the full lumi. is proposed

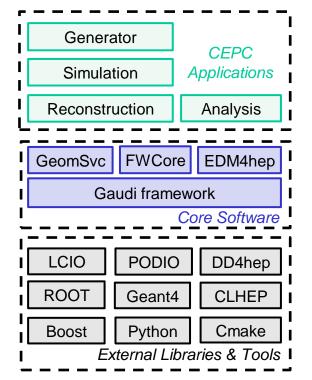



CEPC Detector and Software




Recent added CEPC software applications:

- Software for SiTrk + DC design, detector description and track fitting
- Cluster counting method of Drift Chamber (DC)
- Simulation and simplified digitization of the crystal bar ECal

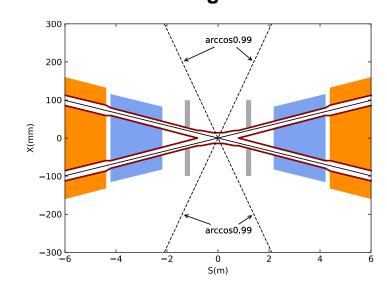


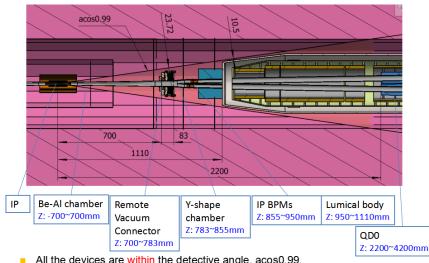
CEPCSW Structure

Requirements of CEPC Detector

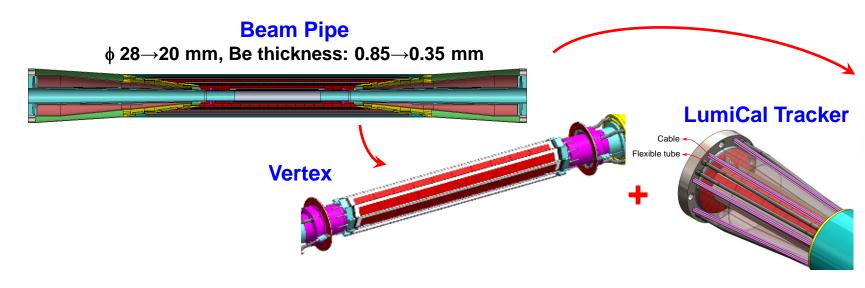
The physics motivations dictate our selection of detector technologies

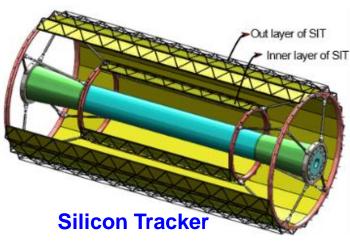
Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ ${\rm BR}(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H o b ar{b}/car{c}/gg$	${ m BR}(H o bar b/car c/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu \text{m})$
$H \to q\bar{q}, WW^*, ZZ^*$	${\rm BR}(H \to q\bar{q},WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E = 3 \sim 4\%$ at $100~{ m GeV}$
$H \to \gamma \gamma$	${ m BR}(H o\gamma\gamma)$	ECAL	$\frac{\Delta E/E =}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$


- Flavor physics \Rightarrow Excellent PID, better than 2σ separation of π/K at momentum up to ~20 GeV.
- EW measurements \Rightarrow High precision luminosity measurement, $\delta L / L \sim 10^{-4}$.


CEPC R&D: Machine Detector Interface (MDI)

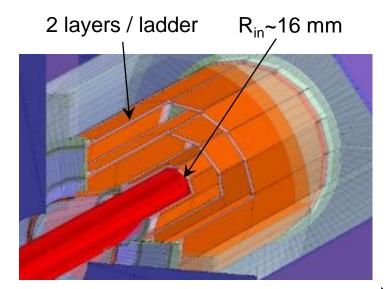
Crossing angle: 33 mrad Focal length: 2.2 m


Final focusing magnets (QD0, QF1) with **Segmented Anti-Solenoidal Magnets**



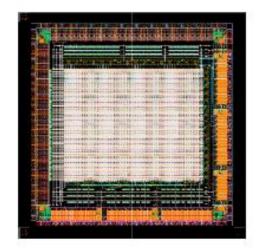
All the devices are within the detective angle, acos0.99.

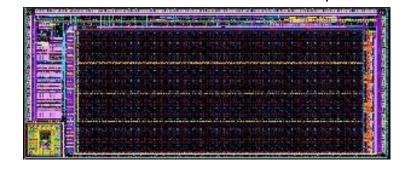
2021 Workshop on CEPC Detector & MDI Mechanical Design, Oct.22-23 https://indico.ihep.ac.cn/event/14392/



CEPC R&D: Silicon Pixel Chips

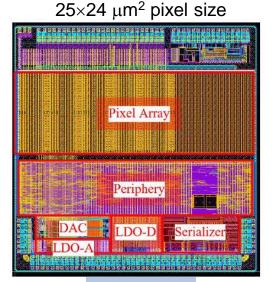
Goal: $\sigma(IP) \sim 5 \mu m$ for high P track

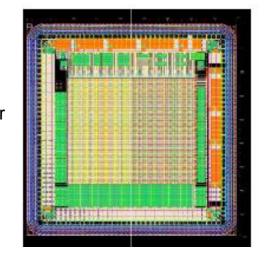

CDR design specifications


- Single point resolution ~ 3µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 3 series: JadePix, TaichuPix, CPV

TaichuPix-2, 64×192 array


Upper chip **CPV4** (SOI-3D), 64×64 array $\sim21\times17~\mu\text{m}^2$ pixel size



JadePix-3 Pixel size ~16×23 μm²

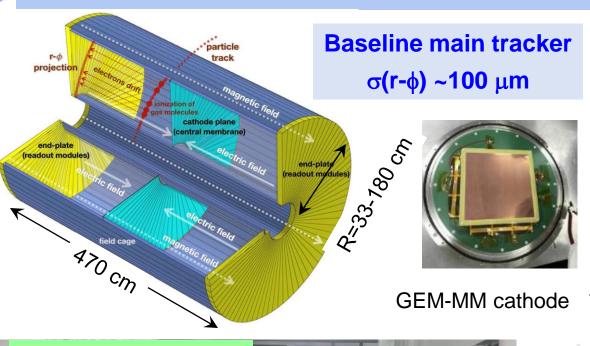
Full size TaichuPix-3 to be used for prototyping ladder

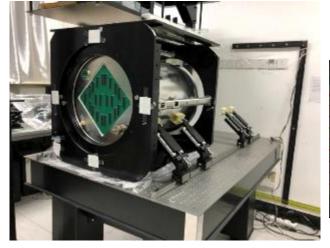
Lower chip

MOST 1

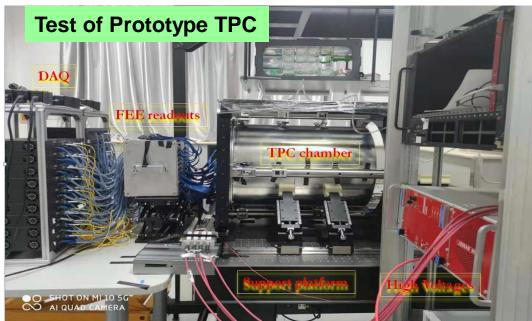
Resolution 5 microns, 53mW/cm²

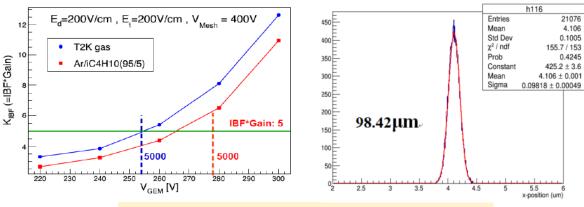
Tower-Jazz CiS process


MOST 2


45

CEPC R&D: Time Projection Chamber

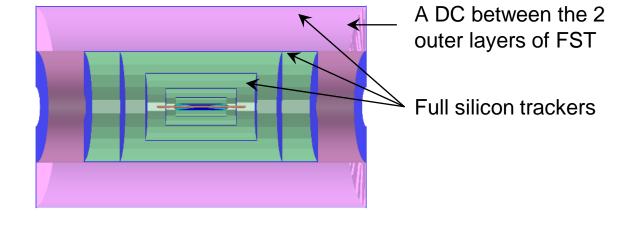


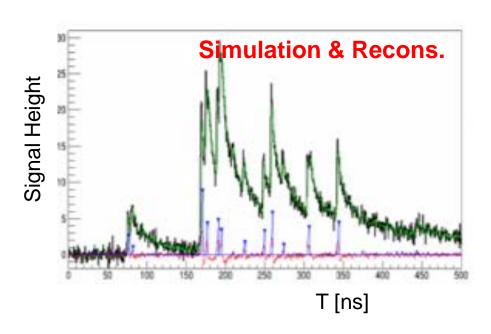

MOST 1

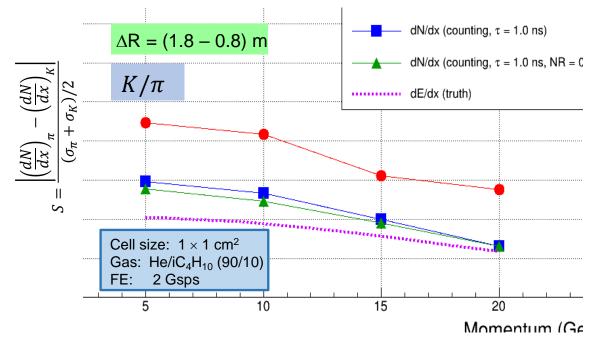
TPC Prototype + UV laser beams

Low power FEE ASIC

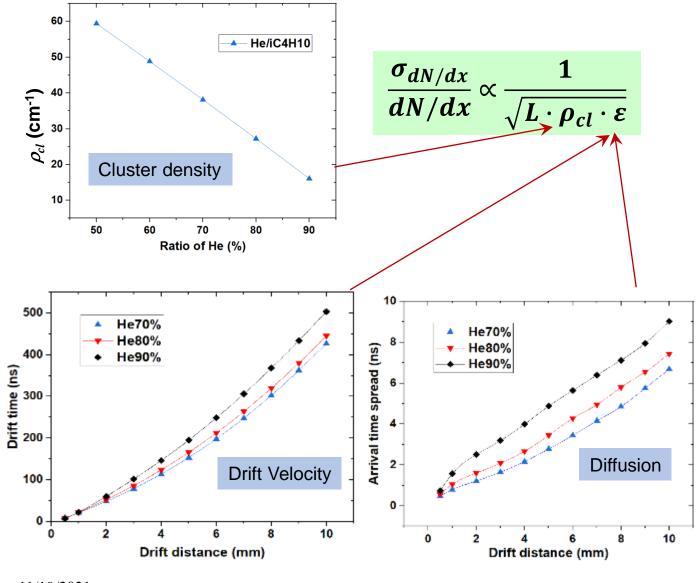
Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

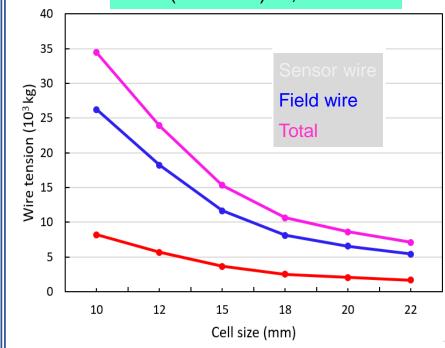

 $\sigma_{\rm x}$ < 100 μ m for drift length of 27cm



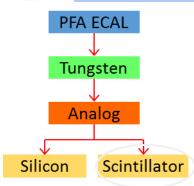

A Drift Chamber That is Optimized for PID

- Goal: $2\sigma \pi/K$ separation at P < ~ 20 GeV/c.
- Cluster counting method, or dN/dx, measures the number of primary ionization
- Can be optimized specifically for PID: larger cell size, no stereo layers, different gas mixture.
- Garfield++ for simulation, realistic electronics, peak finding algorithm development.

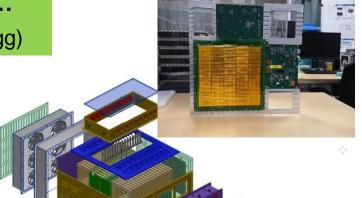



Attempts to Optimize A PID Drift Chamber

- Reducing the number of cells
 - Has small effect on dN/dX.
 - Reduce support structure material
 - Reduce construction difficulty


L~5.4 m, Sag ~ 240 μ m $\Delta R = (1.8 - 0.6)$ m, S:F ~ 1:3

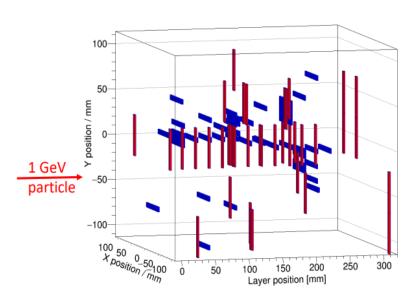
CEPC R&D: ScW-ECAL Prototype



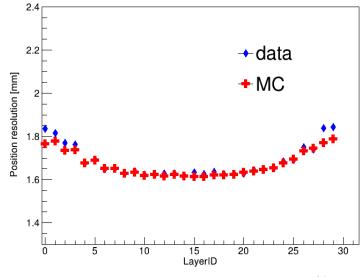
Goal of ECAL+HCAL+...

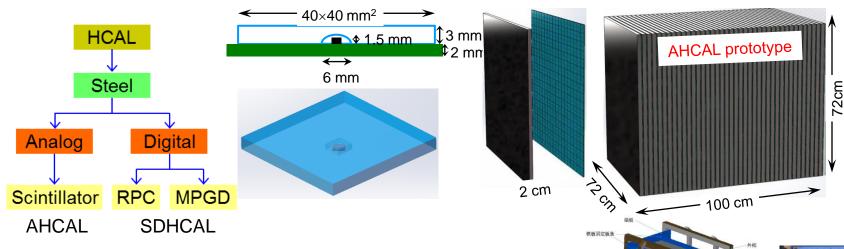
4% BMR, e.g. in $(Z\rightarrow vv)$ $(H\rightarrow gg)$

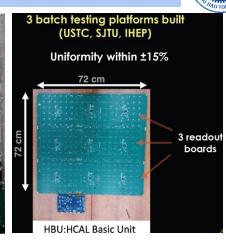




ScECAL prototype with 6700 channels 32 layers (EBU), 22 x 22 cm², ~22X₀ Scintillator (5×45mm²) + MPPC S12571 Embedded FEE (192 SPIROC2E ASICs)


It has been tested with cosmic rays & an electron beam at IHEP (Nov. 2020).


Cell Granularity: 5mm × 5mm Position resolution: 1.6-1.8mm

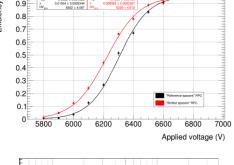


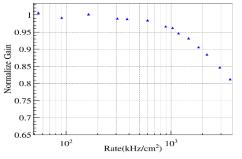
CEPC R&D: PFA HCAL

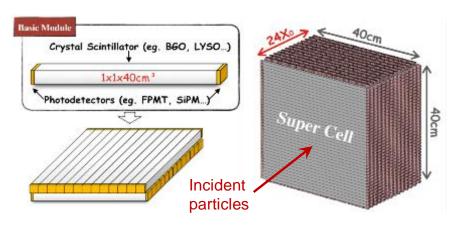
AHCAL with Scint.+SiPM (USTC, IHEP, SJTU)

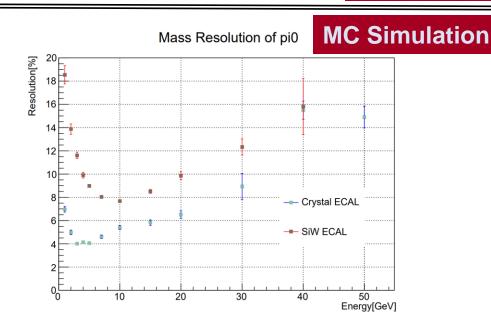
- Prototype in production, size 72×72×100 cm³,

- 40 layers, Fe+Sct+SiPM+PCB=20+3+2=25mm,


- 12960 Scintillators, cell size 40×40 mm²
- SiPM: HPK 14160-1315PS and NDL-1313-15S
- SDHCAL based on GRPC (SJTU)
 Constructed 1×1 m² GRPCs, MIP Efficiency ~ 95.7%
- SDHCAL based on MPGD (USTC, IHEP)

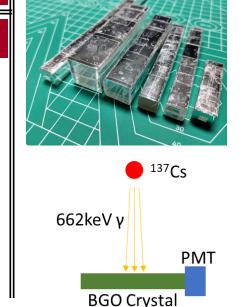

Constructed 1×0.5 m² RWell detector, MIP Efficiency ~ 95.9%, count rate ~ 1.8 MHz/cm²



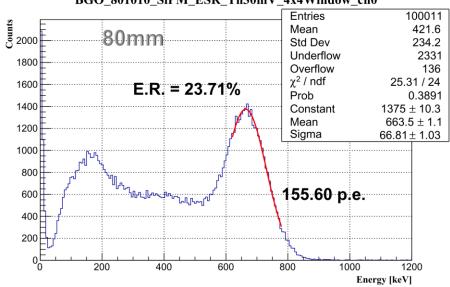

CEPC R&D: High Granularity Crystal ECAL

- Timing at two ends for positioning along bar.
- Significant reduction of number of channels.

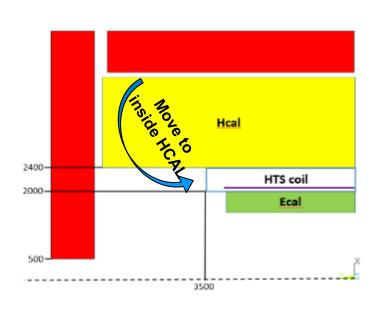
Design Idea


Goal

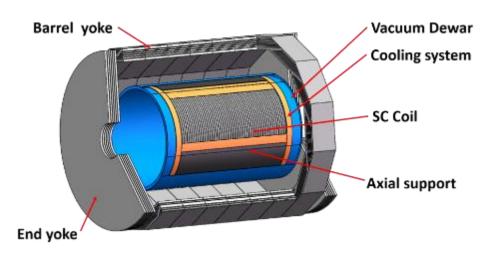
- Comparable BMR resolution as with the Sci+W ECAL.
- Much better sensitivity to γ/e, especially at low energy.

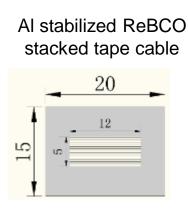

Bench Test

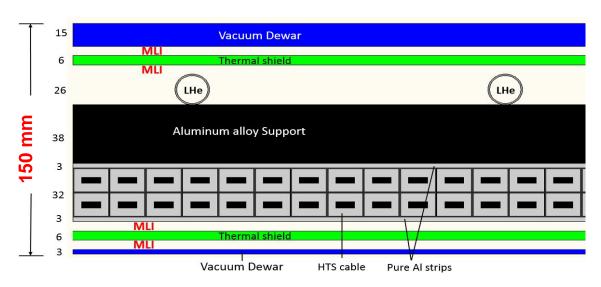
Performance Test


$BGO_801010_SiPM_ESR_Th30mV_4x4Window_ch0$

Solenoid Magnet Inside HCAL




Challenges

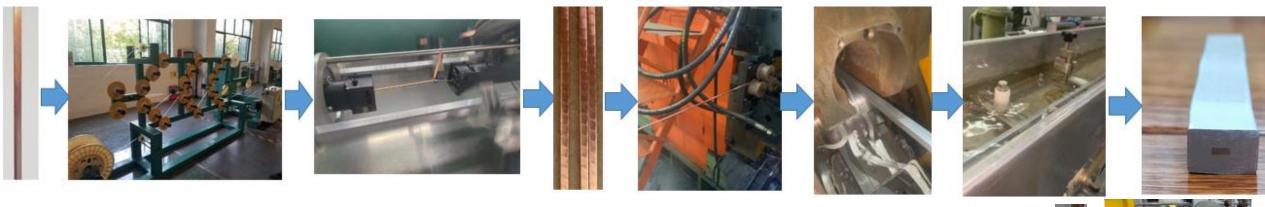

Low mass, ultra-thin, high strength cable

- Inner radius = 2.33m, length < 8m, central magnetic field: 3 T
- Magnet radial thickness < 150 mm
- Mass of magnet $< 1.5X_0$

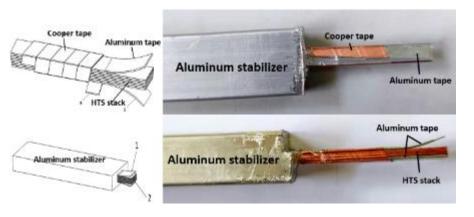
R&D: high strength HTS cable, ultra-thin cryostat.

HTS cable length (km)	9
ASTC weight(ton)	9
Operating current(A)	29700
Cold mass weight (ton)	20
Total weight (ton)	35

11/19/2021



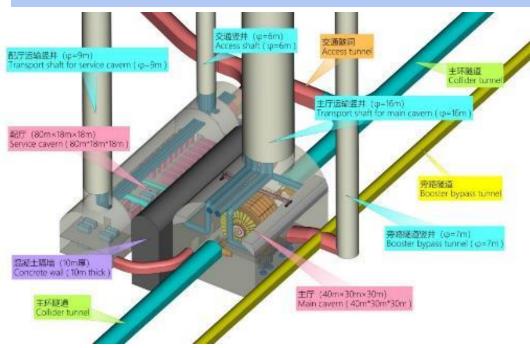
HTS Prototype Cable Development



Prototype cable: 15×10 mm², Tape Width: 4 mm, thickness: 80 μm;

tape layer: 20, Expected operating current: 6000 A@5K

Big Progress: 10 m ASTC prototype cable is ready. Cable test is ongoing.



The Experimental Area

Main cavern to host the detector

- 40*30*30 m³ (L*H*W)
- One main access shaft, Ø16 m
- An 1K-ton gantry crane for large heavy objects


Auxiliary cavern for peripheral equipment and devices

- 80*18*18 m³ (L*H*W)
- One service shaft of Ø9 m
- One personnel access shaft Ø6 m

Ground level buildings

Thank you!

