

QCD sum rules analysis of weak decays of doubly heavy baryons

Zhi-Peng Xing SJTU 2021.11.25

- Introduction
- QCD Sum Rules
- Phenomenological Applications
- Summary

Content

• Introduction

- QCD Sum Rules
- Phenomenological Applications

• Summary

- A new platform for precise testing standard model.
- A new platform for searching new physics.

CERN

ABOUT NEWS SCIENCI

LHCb announces a charming new particle

The LHCb experiment has reported the observation of a baryon containing two charm quarks and one up quark

6 JULY, 2017

Experimental progress

Measurement of the lifetime of the doubly charmed baryon Ξ_{cc}^{++} PhysRevLett.121.052002 $0.256_{-0.022}^{+0.024} (\text{stat}) \pm 0.014 (\text{syst}) \text{ ps}$

 $\Lambda_c^+ K^- \pi^+ \pi^+$

First observation of the doubly charmed baryon decay $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$

PhysRevLett.121.162002

y.

ABOUT NEWS SCIENCE

LHCb announces a charming new particle

The LHCb experiment has reported the observation of a baryon containing two charm quarks and one up quark

6 JULY, 2017

CERN

Experimental prograss

Measurement of the lifetime of the doubly charmed baryon Ξ_{cc}^{++}

 $0.256^{+0.024}_{-0.022}$ (stat) ± 0.014 (syst) ps

 $\Lambda_c^+ K^- \pi^+ \pi^+$

First observation of the doubly charmed baryon decay $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$

PhysRevLett.121.162002

Two most promising channels!

Theorical progress

Weak decays of doubly heavy baryons: • the $1/2 \rightarrow 1/2$ case

Eur.Phy.J.C(2017) 77:781

Discovery potentials of doubly charmed baryons Chinese Physics C Vol.42, No.5(2018)051001

Weak decays of doubly heavy baryons: • SU(3) analysis

Eur.Phy.J.C(2017) 77:800

Regular Article - Theoretical Physics Weak decays of doubly heavy baryons: the $1/2 \rightarrow 1/2$ case Wei Wang^{1,a}, Fu-Sheng Yu^{2,b}, Zhen-Xing Zhao^{1,c} INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China ² School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China Received: 13 July 2017 / Accepted: 4 November 2017 / Published online: 20 November 2017 © The Author(s) 2017. This article is an open access publication Discovery potentials of doubly charmed baryons^{*} Fu-Sheng Yu(于福升)^{1,2;1)} Hua-Yu Jiang(蒋华玉)^{1,2} Run-Hui Li(李润辉)³ Cai-Dian Lü(吕才典)^{4,5;2)} Wei Wang(王伟)^{6;3)} Zhen-Xing Zhao(赵振兴)⁶ ¹ School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China ² Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou 730000, China ³ School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China ⁴ Institute of High Energy Physics, Chinese Academy of Sciences, YuQuanLu 19B, Beijing 100049, China School of Physics, University of Chinese Academy of Sciences, YuQuanLu 19A, Beijing 100049, China ⁶ INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, China

Eur. Phys. J. C (2017) 77:800 https://doi.org/10.1140/epjc/s10052-017-5363-y

THE EUROPEAN CrossMark PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Weak decays of doubly heavy baryons: SU(3) analysis

Wei Wang, Zhi-Peng Xinga, Ji Xub

Eur. Phys. J. C (2017) 77:781

INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

Received: 24 July 2017 / Accepted: 3 November 2017 / Published online: 23 November 2017 © The Author(s) 2017. This article is an open access publication

CrossMark

THE EUROPEAN

Theorical progress

List of studies on weak decays

1703.09086

1707.02834

1707.06570

1711.10289

1712.03830

1805.10878

1810.00541

1803.01476

- 1. Doubly heavy baryon weak decays: $\Xi_{bc}^0 \rightarrow pK^-$, $\Xi_{cc}^+ \rightarrow \Sigma_c^{++}K^-$ 1701.03284
- 2. Discovery potentials of doubly charmed baryons
- 3. Weak decays of doubly heavy baryons: the 1/2 -> 1/2 case
- 4. Weak decays of doubly heavy baryons: SU(3) analysis
- 5. Weak decays of doubly heavy baryons: decay constant
- 6. Weak decays of doubly heavy baryons: Multi-body decays
- 7. Weak decays of doubly heavy baryons: the 1/2 -> 3/2 case
- 8. Weak decays of doubly heavy baryons: the FCNC processes 1807.03101
- 9. Weak decays of doubly heavy baryons: $B_{cc} \rightarrow B_c V$
- 10. Weak decays of triply heavy baryons

....

- Most of them adopt QCD-based phenomenological model in which systematic errors can not be estimated
- QCD calculation is highly demanded

A comprehensive analysis of weak transition for doubly heavy baryons in the light front approac	rm factors for
Xiao-Hui Hu ^{1,0} , Run-Hui Li ^{4,0} , Zhi-Peng Xing ^{1,0} INPAC, SKLPPC, MOE KLPPC, School of Physics and Astronomy, Shanghai Jiao-Tong Un	c h iversity, Shanghai 200240,
People's Republic of China School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, Pee	ople's Republic of China
Received: 28 January 2020 / Accented: 26 February 2020 / Published online: 13 April 2020	
The Author(s) 2020	
Eur. Phys. J. C (2020) 80:398	
Regular Article - Theoretical Physics	TTSICAL JOURNAL C
Towards a heavy diquark effective theory for wea doubly heavy baryons Yu-Ji Shi ^{12,a} , Wei Wang ^{2,b} , Zhen-Xing Zhao ^{2,3,a} , Ulf-G. Meißner ^{1,4,5,d}	tk decays of
Towards a heavy diquark effective theory for wea doubly heavy baryons Yu-Ji Shi ^{1,2,a} , Wei Wang ^{2,b} , Zhen-Xing Zhao ^{2,3,c} , UI-G. Meißner ^{1,4,5,d} , ¹ Helmhotz-Institut für Stuhlen- und Kemphysik and Bethe Center for Theoretical Physics, Livie ¹ NMC, SKLPC, MOB KLPPC, School of Physics and Astronom, Shanphi Jiao Tong Livie ¹ School of Physical Science and Technology, Inner Mongoliu University, Hohbot 010021, China ¹ Thittie for Advanced Simulation, Institut für Kemphysik and Jülich Center for Hadron Phys Germany ⁵ Thilisi State University, 0186 Tbilisi, Georgia Received: 9 March 2020 / Accepted: 20 April 2020 © The Author(s) 2020	ak decays of ersitä Bonn, 53115 Bonn, Germany sity. Shanghai 200240, China sics, Forschungszentrum Jülich, 52425 Ji
Towards a heavy diquark effective theory for weadoubly heavy baryons Yu-Ji Shi ^{12,a} , Wei Wang ^{2,b} , Zhen-Xing Zhao ^{2,3,c} , UI-G. Meißner ^{14,5,d} ¹ Hefmiotz-Institut für Strahlen- und Kemphysik and Bethe Center for Theoretical Physics, Livier ¹ NAC, SKLYC, MOB KLPPC, School of Physics and Astronomy, Shanphi Jiao Tong Yi ¹ Institute for Avanced Simulation, Institut für Kemphysik and Jülich Center for Hadron Physe Germany ³ Thildi State University, 0186 Tbillisi, Georgia Received: 9 March 2020 / Accepted: 20 April 2020 © The Author(s) 2020 Eur. Phys. J. C (2020) 80-568 https://doi.org/10.1140/epjck10052-020-8096-2 T	Ak decays of erstitä Bonn, 53115 Bonn, Germany sity, Shanghai 200240, China sises, Forschungszentrum Jülich, 52425 Ji 'HE EUROPEAN HYSICAL JOURNAL C

Theorical progress

Motivation

The quark model predictions:

	Model calculation(%) [1]
$\mathcal{B}(\Xi_{bb}\to\Sigma_b l^-\bar{v})$	$2.98 imes 10^{-5}$
${\rm B}(\Xi_{bb}\to \Xi_{bc}l^-\bar{v})$	$3.38 imes 10^{-2}$
$B(\Xi_{bc}\to \Xi_b l^- \bar{v})$	$1.81 imes 10^{-2}$
$\mathcal{B}(\Xi_{bc}\to\Sigma_b l^-\bar{v})$	$2.06 imes 10^{-3}$

• Comparing to the $\Xi_{bb} \to \Sigma_b$ processes, the branching ratio of $\Xi_{bb} \to \Xi_{bc} \to \Xi_b / \Sigma_b$ is still larger.

 The processes of doubly heavy baryon decay to doubly heavy baryons are also important.

[1]. 2001.06375

Feynman diagram

• Introduction

- QCD Sum Rules
- Phenomenological Applications

• Summary

Form Factors

helicity Form Factors

$$\begin{aligned} \langle \mathcal{B}_{2}(P_{2})|(V-A)_{\mu}|\mathcal{B}_{1}(P_{1})\rangle &= \bar{u}(P_{2},s_{2}) \bigg[\frac{q_{\mu}}{q^{2}} (M_{1}-M_{2})f_{0}(q^{2}) + \frac{M_{1}+M_{2}}{Q_{+}} ((P_{1}+P_{2})_{\mu} - (M_{1}^{2}-M_{2}^{2})\frac{q_{\mu}}{q^{2}})f_{+}(q^{2}) \\ &+ (\gamma_{\mu} - \frac{2M_{2}}{Q_{+}}P_{1\mu} - \frac{2M_{1}}{Q_{+}}P_{2\mu})f_{\perp}(q^{2}) \bigg] u(P_{1},s_{1}) \\ &- \bar{u}(P_{2},s_{2})\gamma_{5} \bigg[\frac{q_{\mu}}{q^{2}} (M_{1}+M_{2})g_{0}(q^{2}) + \frac{M_{1}-M_{2}}{Q_{-}} ((P_{1}+P_{2})_{\mu} - (M_{1}^{2}-M_{2}^{2})\frac{q_{\mu}}{q^{2}})g_{+}(q^{2}) \\ &+ (\gamma_{\mu} + \frac{2M_{2}}{Q_{-}}P_{1\mu} - \frac{2M_{1}}{Q_{-}}P_{2\mu})g_{\perp}(q^{2}) \bigg] u(P_{1},s_{1}) \end{aligned}$$

• The parameterization are usually used in SCET and Lattice. 1111.1844

•In this parameterization all form factors are in same order.

(Reducing calculation errors)

Numerical results

	F(0)
$f_{+}^{\Xi_{bb}\to\Xi_{bc}}$	$0.441^{+0.008}_{-0.008}(T_1^2, T_2^2)^{+0.020}_{-0.015}(s_1^0)^{+0.072}_{-0.037}(s_2^0)$
$f_0^{\Xi_{bb}\to\Xi_{bc}}$	$0.441^{+0.008}_{-0.008}(T_1^2, T_2^2)^{+0.020}_{-0.015}(s_1^0)^{+0.072}_{-0.037}(s_2^0)$
$f_{\perp}^{\Xi_{bb}\to\Xi_{bc}}$	$0.816^{+0.009}_{-0.007}(T_1^2, T_2^2)^{+0.045}_{-0.047}(s_1^0)^{+0.114}_{-0.092}(s_2^0)$
$g_{+}^{\Xi_{bb}\to\Xi_{bc}}$	$-0.283^{+0.003}_{-0.003}(T_1^2, T_2^2)^{+0.033}_{-0.027}(s_1^0)^{+0.048}_{-0.050}(s_2^0)$
$g_0^{\Xi_{bb} \to \Xi_{bc}}$	$-0.283^{+0.003}_{-0.003}(T_1^2, T_2^2)^{+0.033}_{-0.027}(s_1^0)^{+0.048}_{-0.050}(s_2^0)$
$g_{\perp}^{\Xi_{bb}\to\Xi_{bc}}$	$-0.287^{+0.003}_{-0.004}(T_1^2, T_2^2)^{+0.021}_{-0.016}(s_1^0)^{+0.038}_{-0.040}(s_2^0)$

Correlation functions

Comparing to the Hadron

level and extract the form factors

point correlation functions.

- Introduction
- QCD Sum Rules
- Phenomenological Applications
- Summary

Masses and pole residues

TABLE II: The pole residues.

	This work (without the LL corrections)	This work (with the LL corrections)
$\lambda_{\Xi_{bb}}$	0.760	$0.736^{+0.000}_{-0.000}(T^2)^{+0.053}_{-0.052}(s_0)$
$\lambda_{\Omega_{bb}}$	0.854	$0.825^{+0.000}_{-0.000}(T^2)^{+0.060}_{-0.059}(s_0)$
$\lambda_{\Xi_{bc}}$	0.379	$0.369^{+0.000}_{-0.000}(T^2)^{+0.028}_{-0.027}(s_0)$
$\lambda_{\Omega_{bc}}$	0.400	$0.388^{+0.000}_{-0.000}(T^2)^{+0.030}_{-0.029}(s_0)$
$\lambda_{\Xi_{cc}}$	0.130	$0.130^{+0.000}_{-0.000}(T^2)^{+0.011}_{-0.011}(s_0)$
$\lambda_{\Omega_{cc}}$	0.150	$0.149^{+0.000}_{-0.000}(T^2)^{+0.013}_{-0.012}(s_0)$

TABLE	III:	The	masses.

	This work (without the LL corrections)	This work (with the LL corrections)	Lattice QCD [1]
$m_{\Xi_{bb}}$	10.166	$10.152^{+0.007}_{-0.009}(T^2)^{+0.079}_{-0.080}(s_0)$	10.143
$m_{\Omega_{bb}}$	10.291	$10.279^{+0.006}_{-0.007}(T^2)^{+0.080}_{-0.081}(s_0)$	10.273
$m_{\Xi_{bc}}$	6.948	$6.935^{+0.009}_{-0.007}(T^2)^{+0.080}_{-0.081}(s_0)$	6.943
$m_{\Omega_{bc}}$	7.002	$6.998^{+0.006}_{-0.008}(T^2)^{+0.081}_{-0.081}(s_0)$	6.998
$m_{\Xi_{cc}}$	3.634	$3.629^{+0.010}_{-0.012}(T^2)^{+0.078}_{-0.079}(s_0)$	3.621 [2]
$m_{\Omega_{cc}}$	3.747	$3.743^{+0.009}_{-0.011}(T^2)^{+0.079}_{-0.080}(s_0)$	3.738

the leading logarithmic corrections

$$\left(\frac{\log(\mu_0/\Lambda_{\rm QCD}^{(n_f)})}{\log(\mu/\Lambda_{\rm QCD}^{(n_f)})}\right)^{2\gamma_J-\gamma_O}$$

 $\mu_0 \sim 1 \text{ GeV}$ $\Lambda_{\text{QCD}}^{(3)} = 223 \text{ MeV}$ $\Lambda_{\text{QCD}}^{(4)} = 170 \text{ MeV}$

[1]. 1409.0497[2]. 1707.01621

Convergence of OPE

 $f_{+,0}^{\Xi_{bb}\to\Xi_{bc}}(0) = 0.332(73.309\%)_{dim0} + 0.101(22.300\%)_{dim3} + 0.101(22.30\%)_{dim3} + 0.101(22.30\%)_{dim3} + 0.101(22.30\%)_{dim3} + 0.101(22.30\%)_{dim3} + 0.1$

 $+ 0.014(3.063\%)_{dim5} - 0.006(1.329\%)_{dim6}$

 $f_{\perp}^{\Xi_{bb}\to\Xi_{bc}}(0) = 0.630(75.700\%)_{dim0} + 0.194(23.326\%)_{dim3}$

 $-0.003(0.310\%)_{dim5} - 0.006(0.663\%)_{dim6}.$

- For b decay processes, QCD Sum Rule calculations are dominate ed by perturbative term.
- The leading order correction in α_s of perturbative term need to considered.

next to α_s order

One of the 34 diagrams

One of the 34 diagrams

• The leading order in α_s correcctions will be considered in the future.

q^2 -dependence of form factors

$$f(q^2) = \frac{1}{1 - q^2/(m_{\text{pole}})^2} (a + bz(q^2))$$

 $f_0(q^2)$

 q^2

0.8

0.225

0.20

Numerical results

	F(0)
$f_{+}^{\Xi_{bb}\to\Xi_{bc}}$	$0.441^{+0.008}_{-0.008}(T_1^2, T_2^2)^{+0.020}_{-0.015}(s_1^0)^{+0.072}_{-0.037}(s_1^0)^{+0.072}_{-0.037}(s_1^0)^{-0.037}_{-0.037}(s_1^0)^{-0.03$
$f_0^{\Xi_{bb}\to\Xi_{bc}}$	$0.441^{+0.008}_{-0.008}(T_1^2, T_2^2)^{+0.020}_{-0.015}(s_1^0)^{+0.072}_{-0.037}(s_2^0)^{-0.037}_{-0.037}(s_2^0)^{-0.03$
$f_{\perp}^{\Xi_{bb}\to\Xi_{bc}}$	$0.816^{+0.009}_{-0.007}(T_1^2, T_2^2)^{+0.045}_{-0.047}(s_1^0)^{+0.114}_{-0.092}(s_2^0)^{+0.114}_{-0.092}(s_2^0)^{-0.014}_{-0.092}(s_2^0)^{-0.014}_{-0.092}(s_2^0)^{-0.014}_{-0.092}(s_2^0)^{-0.014}_{-0.007}(s_2^0)^{-0.01$
$g_{+}^{\Xi_{bb}\to\Xi_{bc}}$	$-0.283^{+0.003}_{-0.003}(T_1^2, T_2^2)^{+0.033}_{-0.027}(s_1^0)^{+0.048}_{-0.050}(s_1^0)^{-0.0$
$g_0^{\Xi_{bb}\to\Xi_{bc}}$	$-0.283^{+0.003}_{-0.003}(T_1^2, T_2^2)^{+0.033}_{-0.027}(s_1^0)^{+0.048}_{-0.050}(s_1^0)^{-0.0$
$g_{\perp}^{\Xi_{bb} \to \Xi_{bc}}$	$-0.287^{+0.003}_{-0.004}(T_1^2, T_2^2)^{+0.021}_{-0.016}(s_1^0)^{+0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.038}_{-0.040}(s_1^0)^{-0.048}_{-0.040}(s_1^0)^{-0.0$
	•
	a
$f_{+}^{\Xi_{bb}\to\Xi_{bc}}$	1.200 ± 0.460(T_1^2, T_2^2) ± 0.600(s_1^0, s_2^0)
$f_0^{\Xi_{bb}\to\Xi_{bc}}$	$1.090 \pm 0.440(T_1^2, T_2^2) \pm 0.600(s_1^0, s_2^0)$
$f_{\perp}^{\Xi_{bb}\to\Xi_{bc}}$	1.030 ± 0.480 (T_1^2, T_2^2) ± 0.710 (s_1^0, s_2^0)
$g_+^{\Xi_{bb}\to\Xi_{bc}}$	$0.040 \pm 0.26(T_1^2, T_2^2) \pm 0.710(s_1^0, s_2^0)$
$g_0^{\Xi_{bb} \to \Xi_{bc}}$	$-0.001 \pm 0.255(T_1^2, T_2^2) \pm 0.710(s_1^0, s_2^0)$
$g_{\perp}^{\Xi_{bb}\to\Xi_{bc}}$	$0.100 \pm 0.250(T_1^2, T_2^2) \pm 0.590(s_1^0, s_2^0)$
	b
$f_{+}^{\Xi_{bb}\to\Xi_{bc}}$	$-10.1 \pm 6.1(T_1^2, T_2^2) \pm 7.9(s_1^0, s_2^0)$
$f_0^{\Xi_{bb}\to\Xi_{bc}}$	$-8.6 \pm 5.8(T_1^2, T_2^2) \pm 7.9(s_1^0, s_2^0)$
$f_{\perp}^{\Xi_{bb}\to\Xi_{bc}}$	$-2.7 \pm 6.3(T_1^2, T_2^2) \pm 9.3(s_1^0, s_2^0)$
$g_{+}^{\Xi_{bb}\to\Xi_{bc}}$	$-4.3 \pm 3.4(T_1^2, T_2^2) \pm 9.3(s_1^0, s_2^0)$
$a^{\Xi_{bb} \to \Xi_{bc}}$	$-38 + 34(T^2 T^2) + 0.3(e^0 e^0)$
g_0	$-3.8 \pm 3.4(1_1, 1_2) \pm 3.3(3_1, 3_2)$

decay width

channel	decay width (10^{-14}GeV)
$\Gamma(\Xi_{bb}\to\Xi_{bc})$	$1.955 \pm 0.685(T_1^2, T_2^2) \pm 1.673(s_1^0, s_2^0)$
$\Gamma_L(\Xi_{bb}\to\Xi_{bc})$	$1.728 \pm 0.658(T_1^2, T_2^2) \pm 1.363(s_1^0, s_2^0)$
$\Gamma_T(\Xi_{bb}\to\Xi_{bc})$	$0.227 \pm 0.175(T_1^2, T_2^2) \pm 0.342(s_1^0, s_2^0)$
$\Gamma(\Omega_{bb} \to \Omega_{bc})$	$3.005 \pm 0.780(T_1^2, T_2^2) \pm 4.932(s_1^0, s_2^0)$
$\Gamma_L(\Omega_{bb}\to\Omega_{bc})$	$1.854 \pm 0.670 (T_1^2, T_2^2) \pm 2.363 (s_1^0, s_2^0)$
$\Gamma_T(\Omega_{bb} \to \Omega_{bc})$	$1.151 \pm 0.382(T_1^2, T_2^2) \pm 2.562(s_1^0, s_2^0)$
$\Gamma(\Xi_{bc}\to\Xi_{cc})$	$4.174 \pm 0.796(T_1^2, T_2^2) \pm 4.933(s_1^0, s_2^0)$
$\Gamma_L(\Xi_{bc}\to\Xi_{cc})$	$3.260 \pm 0.730 (T_1^2, T_2^2) \pm 4.272 (s_1^0, s_2^0)$
$\Gamma_T(\Xi_{bc}\to\Xi_{cc})$	$0.914 \pm 0.279(T_1^2, T_2^2) \pm 0.66(s_1^0, s_2^0)$
$\Gamma(\Omega_{bc} \to \Omega_{cc})$	$4.799 \pm 1.095(T_1^2, T_2^2) \pm 4.385(s_1^0, s_2^0)$
$\Gamma_L(\Omega_{bc}\to\Omega_{cc})$	$2.762 \pm 0.676(T_1^2, T_2^2) \pm 2.931(s_1^0, s_2^0)$
$\Gamma_T(\Omega_{bc} \to \Omega_{cc})$	$2.037 \pm 0.867 (T_1^2, T_2^2) \pm 1.454 (s_1^0, s_2^0)$

$\frac{d\Gamma}{dq^2}$	=	$\frac{d\Gamma_L}{dq^2} + \frac{d\Gamma_T}{dq^2},$
$\frac{d\Gamma_T}{dq^2}$	=	$\frac{G_F^2 V_{cb} ^2 P' p_1 }{16(2\pi)^3 M_{\mathcal{B}}^2 \sqrt{q^2}} \frac{2(m_l^2 - q^2)(m_l^2 + 2q^2)}{3q^2} \bigg(H_{\frac{1}{2},1}^{\frac{1}{2}} ^2 + H_{-\frac{1}{2},-1}^{-\frac{1}{2}} ^2 \bigg),$
$\frac{d\Gamma_L}{dq^2}$	=	$\frac{G_F^2 V_{cb} ^2 P' p_1 }{16(2\pi)^3 M_{\mathcal{B}}^2 \sqrt{q^2}} \frac{2(m_l^2 - q^2)}{3q^2} \bigg((m_l^2 + 2q^2) (H_{-\frac{1}{2},0}^{\frac{1}{2}} ^2 + H_{\frac{1}{2},0}^{-\frac{1}{2}} ^2) + 3m_l^2 (H_{-\frac{1}{2},t}^{\frac{1}{2}} ^2 + H_{\frac{1}{2},t}^{-\frac{1}{2}} ^2) \bigg)$

Helicity amplitude method

q^2 -dependence of decay width

decay width

channel	decay width(10^{-14} GeV)
$\Gamma(\Xi_{bb}\to\Xi_{bc})$	$1.955 \pm 0.685(T_1^2, T_2^2) \pm 1.673(s_1^0, s_2^0)$
$\Gamma_L(\Xi_{bb}\to\Xi_{bc})$	$1.728 \pm 0.658(T_1^2, T_2^2) \pm 1.363(s_1^0, s_2^0)$
$\Gamma_T(\Xi_{bb}\to\Xi_{bc})$	$0.227 \pm 0.175(T_1^2, T_2^2) \pm 0.342(s_1^0, s_2^0)$
$\Gamma(\Omega_{bb} \to \Omega_{bc})$	$3.005 \pm 0.780(T_1^2, T_2^2) \pm 4.932(s_1^0, s_2^0)$
$\Gamma_L(\Omega_{bb}\to\Omega_{bc})$	$1.854 \pm 0.670(T_1^2, T_2^2) \pm 2.363(s_1^0, s_2^0)$
$\Gamma_T(\Omega_{bb} \to \Omega_{bc})$	$1.151 \pm 0.382(T_1^2, T_2^2) \pm 2.562(s_1^0, s_2^0)$
$\Gamma(\Xi_{bc}\to\Xi_{cc})$	$4.174 \pm 0.796(T_1^2, T_2^2) \pm 4.933(s_1^0, s_2^0)$
$\Gamma_L(\Xi_{bc} \to \Xi_{cc})$	$3.260 \pm 0.730 (T_1^2, T_2^2) \pm 4.272 (s_1^0, s_2^0)$
$\Gamma_T(\Xi_{bc}\to\Xi_{cc})$	$0.914 \pm 0.279(T_1^2, T_2^2) \pm 0.66(s_1^0, s_2^0)$
$\Gamma(\Omega_{bc} \to \Omega_{cc})$	$4.799 \pm 1.095(T_1^2, T_2^2) \pm 4.385(s_1^0, s_2^0)$
$\Gamma_L(\Omega_{bc}\to\Omega_{cc})$	$2.762 \pm 0.676(T_1^2, T_2^2) \pm 2.931(s_1^0, s_2^0)$
$\Gamma_T(\Omega_{bc} \to \Omega_{cc})$	$2.037 \pm 0.867 (T_1^2, T_2^2) \pm 1.454 (s_1^0, s_2^0)$
-	

The error of s_1^0 , s_2^0 represent the dependence of s_1^0 , s_2^0 .

• The error of T_1^2 , T_2^2 represent the error in calculation.

QCD Sum Rules compare with model calculation

	Our work (10 ⁻¹⁴ GeV)	Model calculation(10 ⁻¹⁴ GeV)[1]	Model calculation(10 ⁻¹⁴ GeV)[2]
$\Gamma(\Xi_{bb}\to\Xi_{bc}l^-\bar{v})$	1.9±0.7	6.02	3.30
$\Gamma(\Xi_{bb}\to\Xi_{bc}l^-\bar{v})$	3.0±0.8	5.24	3.69
$\Gamma(\Xi_{bb}\to\Xi_{bc}l^-\bar{v})$	4.1±0.8	4.26	4.50
$\Gamma(\Xi_{bb}\to\Xi_{bc}l^-\bar{v})$	4.7±1.1	4.11	3.94

• Our predictions are consistent with model calculation.

- Introduction
- QCD Sum Rules
- Phenomenological Applications
- Summary

- We have adopted QCDSR to investigate the weak decays of spin-1/2 doubly-heavy baryon to spin-1/2 doubly-heavy baryon.
- On the OPE side, the b → c processes of doubly heavy baryon decays are perturbative term dominate.
- We estimate the next to α_s order contribution ~5%.
- We have also considered the contribution from the negative parity baryons to eliminate the ambiguousness on the choice of the form factors.
- No model-dependent parameters are introduced.
- Our results are comparable to other works.

Thank you for your attention!