

Search for Ξ_{cc}^+ with $\Xi_c^+\pi^+\pi^-$ decay at LHCb

俞洁晟 Hunan University

CLHCP

Nanjing Normal University/Tsinghua University

25-28 Nov 2021, Nanjing, China

Outline

Introduction

LHCb detector and data-taking

Analysis strategy

- Candidate selection
- □ Machine learning
- □ Simultaneous fit
- Control mode
- □ lifetime and mass hypotheses
- Results

Introduction

- Doubly heavy-baryons are of key importance for completing the baryon spectrum
- Shedding light on perturbative and non-perturbative QCD dynamics
 - Theoretical prediction mass region: 3500~3700 MeV/c²
 - **J** Isospin splitting of **a few MeV**/ c^2 between Ξ_{cc}^+ and Ξ_{cc}^{++}
 - **D** Theoretical prediction \mathcal{Z}_{cc}^+ lifetime region: **50**~**250 fs** (~3-4 times shorter than \mathcal{Z}_{cc}^{++})
- Some large branching fractions of \mathcal{Z}_{cc}^+ and \mathcal{Z}_{cc}^{++} decays (relative to $\mathcal{Z}_{cc}^{++} \rightarrow \Sigma_c^{++}(2455)\overline{K}^{*0}$)

$$\mathcal{R}_{\tau} = \frac{\tau_{\Xi_{cc}^{+}}}{\tau_{\Xi_{cc}^{++}}} = 0.25 \sim 0.37$$

Baryons	Modes	$\mathcal{B}_{ ext{LD}}$
$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1
	pD^{*+}	0.04
	pD^+	0.0008
$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{\tau}/0.3) \times 0.22$
	$\Sigma_{c}^{++}(2455)K^{-}$	$(\mathcal{R}_{\tau}/0.3) \times 0.01$
	$\Xi_c^+ \rho^0$	$(\mathcal{R}_{\tau}/0.3) \times 0.04$
	ΛD^+	$(\mathcal{R}_{\tau}/0.3) \times 0.004$
	pD^0	$(\mathcal{R}_{\tau}/0.3) \times 0.001$

Chin. Phys. C42 (2018) 051001

Experimental searches for Ξ_{cc}^+

- \succ Search Ξ_{cc}^+ have a long history
 - □ SELEX reported the observation of Ξ⁺_{cc} (Phys. Rev. Lett. 89 (2002) 112001, Phys. Lett. B628 (2005) 18)
 - No confirmed by FOCUS, BaBar, LHCb and Belle (Nucl, Phys. Proc. Suppl. 115 (2003) 33, Phys. Rev. D74 (2006) 011103, JHEP 12 (2013) 090, Phys. Rev. D89 (2014) 052003)
- > First observed Ξ_{cc}^{++} by LHCb at 2017

```
The mass of \Xi_{cc}^{++} is 3621.55 ±
0.23 (stat) ± 0.30 (syst) MeV/c<sup>2</sup>
JHEP 02 (2020) 049
The lifetime of \Xi_{cc}^{++} is 0.256<sup>+0.024</sup><sub>-0.022</sub>(stat) ± 0.014(syst) fs
Phys. Rev. Lett. 121 (2018) 052002
```


PRL 119 (2017) 112001

Latest studies of \mathcal{Z}_{cc}^+ at LHCb

\succ High accumulated yields for Ξ_{cc}^{++} at LHCb 2016~2018 JHEP 02 (2020) 049

Production cross-section of Ξ⁺_{cc} is expected to be similar to Ξ⁺⁺_{cc}
 Search for the Ξ⁺_{cc} in Λ⁺_cπ⁺K⁻ using Run-I and Run-II data
 No significant signal, setting the upper limit

2021/11/25

Sci.China-Phys.Mech.Astron.63, 221062 (2020)

LHCb detector and data-taking

 \blacktriangleright Acceptance 2 < η < 5, with excellent vertexing, tracking, PID

LHCb Integrated Recorded Luminosity in pp, 2010-2018

 \blacktriangleright Run1 (2011-2012):1 fb⁻¹ @ 7 TeV 2 fb⁻¹ @ 8 TeV

➢ Run2 (2015-2018): 5.9 fb⁻¹ @ 13 TeV

Searching for $\mathcal{Z}_{cc}^+ \to \mathcal{Z}_c^+ \pi^+ \pi^-$

- Expecting large hadronic backgrounds, a MVA-based "online" pre-selection applied
- All final states
 large P_T
 Tight PID required

$$\succ \Xi_{cc}^+$$
Good vertex

The machine learning

- Multivariate selector further explores
- Selector optimized using simulated decays for signal
- > The combinatorial background is represented by same-sign pions (SSP) $\mathcal{I}_c^+ \pi^- \pi^-$

Variable After TMVA $\operatorname{sum}(\Xi_{cc}^{+} \operatorname{bachelor} p_{T})$ $\log(\Xi_{cc}^+ \chi_{vtx}^2/\mathrm{ndf}) - \Xi_c^+$ mass and Ξ_{cc}^+ PV constraints The signal efficiency of $(\Xi_c^+ p_{\rm T}) / (\text{sum of the } \Xi_{cc}^+ \text{ daughters } p_{\rm T})$ 18% Ξ_{cc}^+ maximum DOCA (between any pairs of daughters) $\log(\Xi_{cc}^+ \chi_{IP}^2)$ The background $\log(\Xi_c^+ \chi_{\rm IP}^2)$ rejection of about $(\Xi_c^+ \chi_{\rm IP}^2)$ / (sum of the Ξ_{cc}^+ daughters $\chi_{\rm IP}^2$) Ξ_c^+ maximum DOCA (between any pairs of daughters) 99.9%. $\Xi_c^+ \chi^2_{\rm vtv}/{\rm ndf}$ Ξ_{cc}^+ DIRA(PV) $\operatorname{sum}(\Xi_c^+ \text{ daughters } p_{\mathrm{T}})$ $(\Xi_c^+ \text{ proton } p) / (\text{sum of the } \Xi_c^+ \text{ daughters } p)$ $\log(\Xi_{cc}^+ \chi_{vtx}^2/\mathrm{ndf})$ $\log(\Xi_{cc}^+ \chi_{\rm FD}^2)$ $\log(\Xi_c^+ \chi_{\rm FD}^2)$

Mass distributions and signal significance

 \succ Reduced uncertainty on the mass of the Ξ_{cc}^+ arXiv:2109.07292

 $m(\Xi_c^+\pi^+\pi^-) \equiv m([\Xi_c^+\pi^+\pi^-]_{\Xi_{cc}^+}) - m([pK^-\pi^+]_{\Xi_c^+}) + m(\Xi_c^+).$

Simultaneous fit to mass

- The sum of a Gaussian function and a Crystal Ball Function for signal
- > An exponential function for $\Xi_c^+\pi^+\pi^-$ and second-order Chebyshev polynomial for $\Lambda_c^+\pi^+K^-$

arXiv:2109.07292

Control mode $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$

Same selection with signal mode

≻ Tighter PID

Obtained more than 400 candidates

Diff Ξ_{cc}^+ lifetime and mass hypotheses

lifetime

To mimic different lifetime hypotheses t, per-event weight

is assigned as
$$w(t) = \frac{\frac{-exp(-\frac{1}{\tau})}{\frac{1}{\tau_0}exp(-\frac{t}{\tau_0})}}$$
, where $\tau_0 = 80$ fs

Mass

- Generator level MC with 3471, 3521, 3571, 3621, 3671, 3771 MeV
- Reweighting full simulated sample according generator level daughters' P_T differences with other mass hypotheses

Results

- With 2016, 2017 and 2018 LHCb datasets
- > Not observe significant Ξ_{cc}^+ signal, setting upper limit
- \triangleright R varying from 2 to 5 at the 95% CL @ $m(\Xi_{cc}^+) = 3.4 \sim 3.8 \text{ GeV}$
- \succ R for the Ξ_{cc}^+ lifetime of 80 fs is 4.7 at the 95% CL

Fiducial range: $5 < P_T < 25 \text{ GeV}/c^2$, 2.0 < y < 4.5

Summary

- → First search for the Ξ_{cc}^+ baryon with $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$
- > No significant signal is observed
- > Upper limit on the ratio of production crosssection times branching fraction to \mathcal{Z}_{cc}^{++} is set
- Lots of efforts from LHCb-China group on the doubly heavy baryon studies

Thank you!