

Non-extensive statistical distributions of charmed meson production in Pb-Pb and $pp(\overline{p})$

Yuan Su (苏源)

University of Science and Technology of China

Y. Su, Sun, Zhang, Chen, NUCL SCI TECH 32, 108 (2021)

CLHCP2021 Online Nov. 26, 2021

Outline Introduction	Analysis	Discussion	Summary
----------------------	----------	------------	---------

- Introduction to non-extensive statistics
- Analyze charmed meson p_T spectra by Tsallis-Pareto distribution
- Results and discussion
- Summary

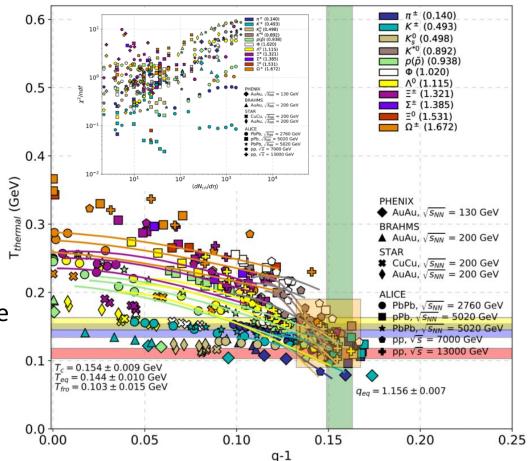
1.1 BackgroundIntroductionAnalysisDiscussionSummary

Non-extensive statistics is a generalization of the traditional Boltzmann-Gibbs statistics.

Non-extensive entropy (Tsallis entropy 1988)

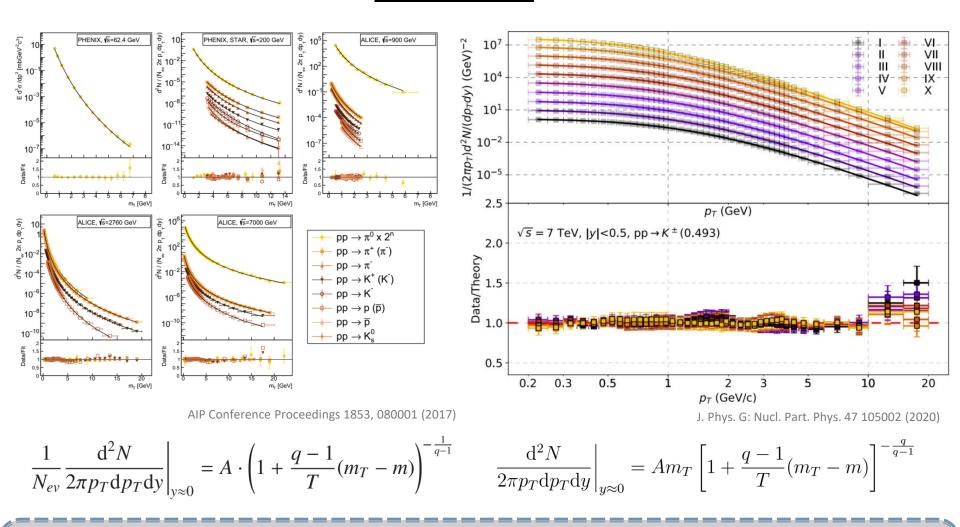
Non-additivity

$$S_q(A, B) = S_q(A) + S_q(B) + (1 - q)S_q(A)S_q(B)$$

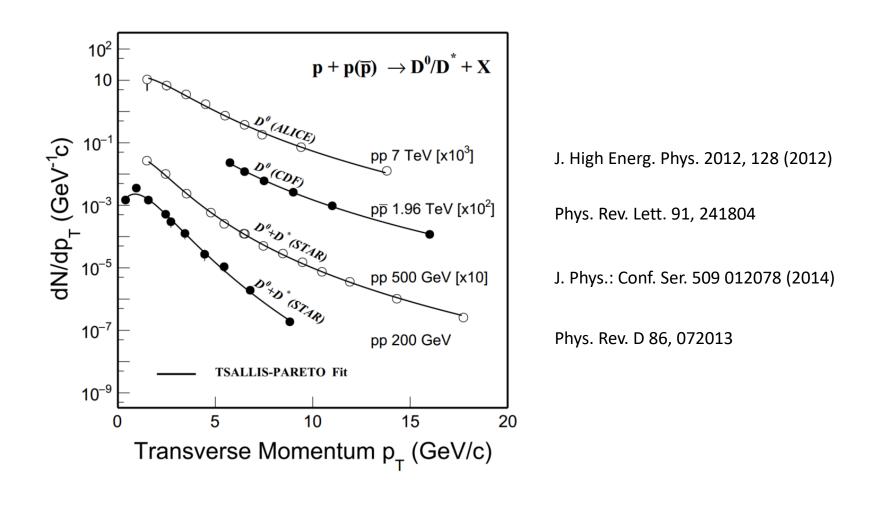

Invariant transverse momentum distribution (Tsallis–Pareto distribution)

$$\frac{dN}{2\pi p_T dp_T} = Am_T \left[1 + \frac{q-1}{T_q} (m_T - M)\right]^{-\frac{q}{q-1}}$$
$$m_T = \sqrt{p_T^2 + m^2}$$

 T_q can differ from T, but its physical meaning should be the same in the limiting case $q \rightarrow 1$.

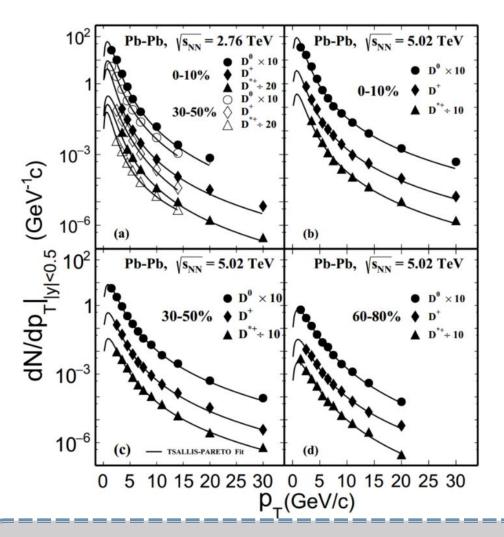

Motivation

- universal description
 - ✓ large and small collisional systems
 ✓ center-of-mass energy, √s
 ✓ the hadron mass
 ✓ the event multiplicity
- Strong grouping phenomenon for the strong group gr
 - ✓ a previously present strongly interacting QCD matter


J. Phys. G: Nucl. Part. Phys. 47 105002 (2020)

1.3 Background

Description in a wide range of collision energies and light hadron transverse momenta Exponential and logarithmic functions can be obtained for $q \rightarrow 1$ Non-extensive properties on heavy flavor hadron?


Yuan Su USTC

Well description in a wide range of collision energies and charmed meson transverse momenta

> The results of $pp(\overline{p})$ provide a reference for PbPb collisions, especially for peripheral collision.

Yuan Su USTC

$$\frac{dN}{2\pi p_T dp_T} = Am_T [1 + \frac{q-1}{T_q} (m_T - M)]^{-\frac{q}{q-1}}$$

$\sqrt{s_{NN}}$ (GeV)	Centrality	Charmed meso	n T	q	
Pb-Pb, 2760	0-10%	D^0	0.239 ± 0.030	1.166 ± 0.014	
		D^+	0.201 ± 0.024	1.180 ± 0.013	
		D^{*+}	0.240 ± 0.031	1.179 ± 0.012	
	30-50%	D^0	0.278 ± 0.041	1.169 ± 0.02	
		D^+	0.322 ± 0.055	1.151 ± 0.02	
		D^{*+}	0.250 ± 0.049	1.205 ± 0.02	
Pb-Pb, 5020 0–10% 30–50% 60–80%	0-10%	D^0	0.240 ± 0.020	1.187 ± 0.00	
		D^+	0.245 ± 0.025	1.190 ± 0.00	
		D^{*+}	0.258 ± 0.026	1.184 ± 0.01	
	30-50%	D^0	0.328 ± 0.026	1.175 ± 0.00	
		D^+	0.311 ± 0.024	1.179 ± 0.00	
		D^{*+}	0.331 ± 0.034	1.185 ± 0.00	
	60-80%	D^0	0.427 ± 0.042	1.151 ± 0.01	
		D^+	0.402 ± 0.043	1.170 ± 0.01	
	D^{*+}	0.430 ± 0.069	1.156 ± 0.01		
рр, 200		$D^{0} + D^{*}$	0.322 ± 0.022	1.081 ± 0.01	
pp, 500		$D^{0} + D^{*}$	0.310 ± 0.020	1.132 ± 0.00	
p(p), 1960		D^0	0.386 ± 0.058	1.143 ± 0.01	
pp, 7000		D^0	0.494 ± 0.062	1.139 ± 0.02	

- Universal description for different centralities at 2.76 and 5.02 TeV
- Base on the T-P distribution, non-extensive parameters(T, q) can be extracted.

Yuan Su USTC

2.3 Flow correction

Introduction Analysis

CLHCP 2021

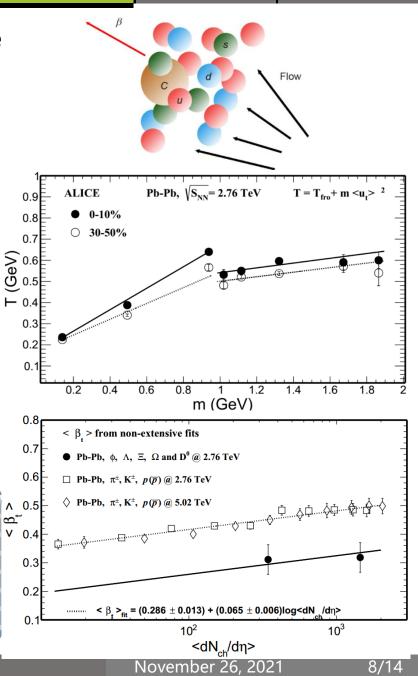
Discussion Summary

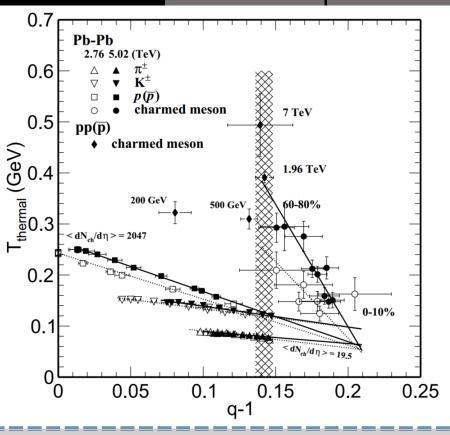
mass dependence of the effective temperature

Blue shift correction

PRC 48, 2462 (1993)

$$T = T_{fro} + m \langle u_t \rangle^2$$

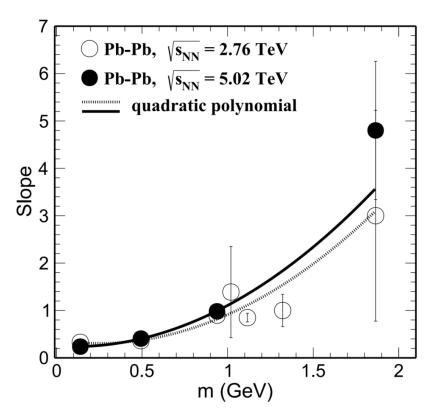

$$\langle \beta_t \rangle = \frac{\langle u_t \rangle}{\sqrt{1 + \langle u_t \rangle^2}}$$


collectivity of charmed mesons

$$\frac{d^2N}{2\pi m_T dm_T dy} = \frac{dN/dy}{2\pi T(m_0 + T)} e^{-(m_T - m_0)/T}$$

- Light hadrons and strangeness, charmed hadrons clearly follow different grouping
- Charmed and strangeness hadrons may freeze out earlier
- Gain less collective velocity

Yuan Su USTC



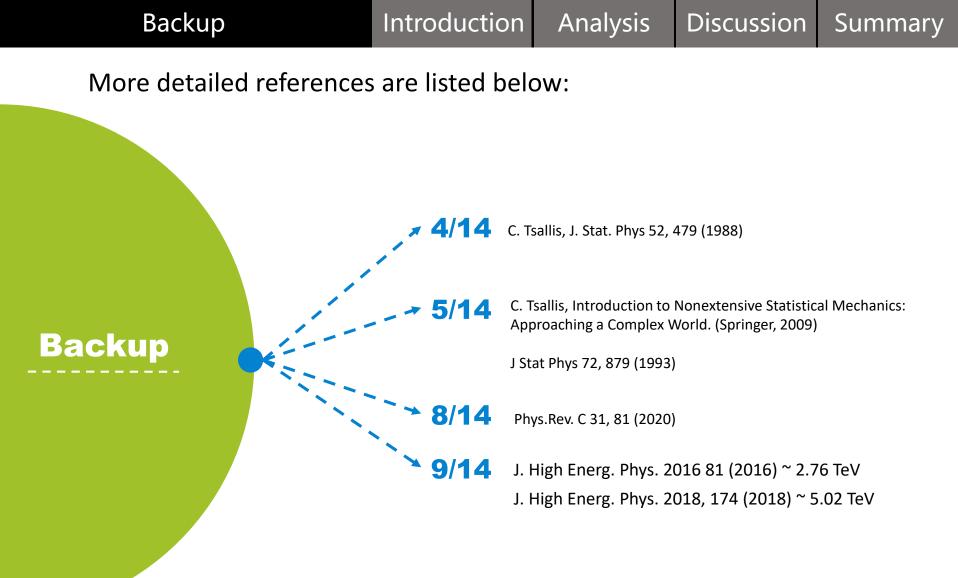
Significant linear relationship between T_{thermal} and q-1 parameter
 A higher T_{thermal} required for charmed meson to reach the same degree of non-extensivity as light flavor hadrons in HIC

• For pp(\overline{p}), $T_{thermal}$ increases with collision energy, but q stops at q-1 = 0.142±0.010

- More peripheral in HIC are less affected by the medium and more similar to $pp(\overline{p})$
- Maybe have grouping phenomenon, more precise data are needed.

Yuan Su USTC

• The slope is **positively correlated** with the hadron mass

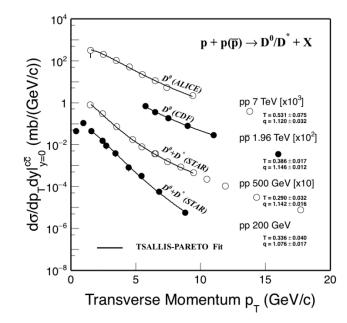

• Weakly dependent of the system energy (2.76 and 5.02 TeV).

Yuan Su USTC

- Describe charmed meson spectra in $pp(\overline{p})$ and PbPb system at a wide p_T range by Tsallis-Pareto distribution
- Extract $T_{thermal}$ by blue shift correction, a higher $T_{thermal}$ required for charmed meson to reach the same degree of non-extensivity as light flavor hadrons
- The slope of $T\sim(q-1)$ is positively correlated with the hadron mass.

- Describe charmed meson spectra in $pp(\overline{p})$ and PbPb system at a wide p_T range by Tsallis-Pareto distribution
- Extract $T_{thermal}$ by blue shift correction, a higher $T_{thermal}$ required for charmed meson to reach the same degree of non-extensivity as light flavor hadrons
- The slope of $T\sim(q-1)$ is positively correlated with the hadron mass.

Thank you!


Backup

 $\langle \beta_t \rangle = (0.286 \pm 0.013) + (0.065 \pm 0.006) \log \langle dN_{ch}/d\eta \rangle.$ (10)

The linear dependence for charmed mesons is

$$\langle \beta_t \rangle = (0.129 \pm 0.037) + (0.065 \pm 0.000) \log \langle dN_{ch}/d\eta \rangle.$$
(11)

$$T_{thermal} = T \sqrt{\frac{1 - \beta_t}{1 + \beta_t}}$$

Yuan Su USTC

Backup