Flavor prospects at CEPC

Towards a Physics White Paper

Lingfeng Li (Brown U.)

Nov. 29, CLHCP 2021

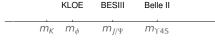
Intro: What's CEPC?

100 km collider and booster ring

Z-factory: $\sim 2.5 \times \text{Tera-}Z$ W-factory: $\sim 3 \times 10^7~W^+W^-$ pairs

Higgs-factory: ~ 2 million Higgs

Number of IPs		ttbar	Higgs 2	W	Z	
		2				
Operation mode		ZH	z	W+W-	ttbar (new)	
\sqrt{s} [GeV]		~ 240	~ 91.2	~ 160	~ 360	
Bu Bu	Run time [years]	[years] 7		1	7.7	
Be Mo Be	L / IP [×10 ³⁴ cm ⁻² s ⁻¹	3	32	10		
En CDR	$\int L dt$ [ab-1, 2 IPs]	5.6	16	2.6		
Bu En	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷		
Be RF	L / IP [×10 ³⁴ cm ⁻² s ⁻¹	5.0	115	15.4	0.5	
CDR GENERAL CORR GENERAL COR	$\int L dt$ [ab-1, 2 IPs]	9.3	57.5	4.0	1.0	
	Event yields [2 IPs	1.7×10 ⁶	2.5×10 ¹²	3×10 ⁷	3×10 ⁵	
	Hour glass Factor		0.9	0.9	0.97	
Luminosity per	IP[1e34/cm^2/s]	0.5	5.0	16	115	

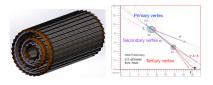

Flavor Physics at CEPC

Z Factory \supseteq Flavor Factory Particle-ID \supseteq Flavor-ID!

Channel	Belle II	LHCb	$Giga ext{-}Z$	CEPC (Tera- Z)
B^0 , B^0	5.3×10^{10}	$\sim 6 \times 10^{13}$	1.2×10^{8}	1.2×10^{11}
B^{\pm}	5.6×10^{10}	$\sim 6 \times 10^{13}$	1.2×10^{8}	1.2×10^{11}
B_s , $ar{B}_s$	5.7×10^{8}	$\sim 2 imes 10^{13}$	3.2×10^{7}	3.2×10^{10}
B_c^{\pm}	-	$\sim 4\times 10^{11}$	2.2×10^5	2.2×10^{8}
Λ_b , $\bar{\Lambda}_b$	-	$\sim 2 \times 10^{13}$	1.0×10^{7}	1.0×10^{10}
c, \bar{c}	2.6×10^{11}	$\gtrsim 10^{14}$	2.4×10^{8}	2.4×10^{11}
τ^+, τ^-	9×10^{10}	-	7.4×10^{7}	7.4×10^{10}

Top-Factory
Higgs-Factory
W-Factory
Tera-Z

m_Z m_{H+Z}

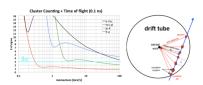

VS. B Factories

- ► Much higher b quark boost
- ightharpoonup Abundant heavy b hadron

VS. Hadron Colliders

- ► Clean environment
- Direct missing momenta measurement

Key Detector Features for Flavor Physics



Tracking sys, grants $\mathcal{O}(10)$ fs sensitivity.

- ► High time precision for CPV measurements.
- Authentic c/τ reconstruction inside a jet.
- ► Greater acceptance for displaced signals.

Advanced PID coming from the combination of different methods.

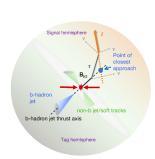
- Flavor tagging for everything.
- Suppressing backgrounds in general.
- ► Clean leptonic/baryonic modes.

Calorimetry gives neutral energy and angular resolution.

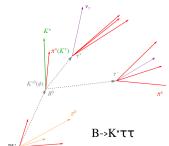
- Better p measurement for neutrinos.
- ightharpoonup Excited states such as D_s^* and radiative decays.
- ▶ Distinguishing $\pi^0/\eta...$, allowing h^0X modes.

CEPC Workshop 2021 (Flavor Part)

```
10:30 b \rightarrow s\tau\tau at a Tera-Z 30'
        Speaker: Lingfeng Li (Brown University)
        Material: Slides 📆
       Flavor/CPV prospects and opportunities at a Tera-Z 30"
        Speaker: Zoltan Ligeti (UC Berkeley)
        Material: Slides 📆
11:30 Lepton identification and backgrounds for flavor studies at the CEPC 30"
        Speaker: Dan YU (IHEP)
        Material: Slides 📆
12:00 Tests of lepton flavor universality at high-energy e+e- colliders 30
        Speaker: Andreas Crivellin (PSI)
14:00 Strange jet tagging 30
       Speaker: Yuichiro Nakai (Shanghai Jiao Tong University)
       Material: Slides 📆
14:30 LFV Z decays at a Tera-Z factory 301
       Speaker: Xabier Marcano (Madrid U)
       Material: Slides 📆
15:00 Prospects for B_o \rightarrow \tau \nu | 30^{\circ}
       Speaker: Yasmine Amhis (IJCLab Orsay)
       Material: Slides =
10:30 Physics analyses and detector requirement study from Benchmark study of BO/Bs->2
       pi0 24"
       Speaker: Yuexin Wang
       Material: Slides 📆
10:54 Jet Charge Reconstruction based on leading jet charged particle 24'
       Speaker: CUI Hanhua
       Material: Slides 📆
11:18 Physics analyses and detector optimization study based on Benchmark study of H->bb.
       cc. aa 24'
       Speaker: 朱永峰
       Material: Slides 📆
```

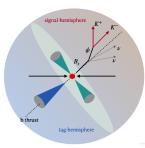

Flavor Physics White Paper

- ► To quantify CEPC flavor physics potential with benchmark analyses, and global interpretation.
- ► To guide the design/optimization of the facility & maximize the physics output.



- ► (Semi)leptonic b decays.
- ► EW penguin b rare decays.
- ► Hadronic decays with neutrals.
- CKM matrix measurements.
- Lepton Flavor Violation in τ and Z decays.
- Exclusive Z hadronic decays.
- Detector benchmark studies.
- ► Hadronic spectroscopy and exotic states.
- Flavorful $\gamma \gamma$ fusion.

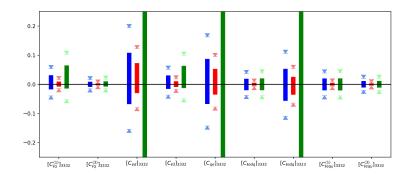
Pinning Down B Anomalies and LFUV



Charged current $b \to c \tau \nu$ decays [Zheng et al., 2020, Amhis et al., 2021]. Absolute precision $\sim 10^{-4}$

Neutral current $b \rightarrow s\tau\tau$ decays [Li and Liu, 2020].

Absolute precision $\lesssim 10^{-6}$: $\sim 10^3-10^4$ improvement from current limits.


Neutral current $B_s \to \phi \nu \bar{\nu}$ decay [In preparation]

Not an anomaly yet but closely related

Absolute precision $\sim 10^{-7}$.

Unique opportunities at the Z-pole

Constraint on LFUV Operators (Prelim.)

 \uparrow Tera-Z, $10 \times$ Tera-Z, Tera-Z but forgot $b \to s \tau \tau$ (The worst three $\sim \mathcal{O}(0.5)$.)

Probing ~ 10 TeV scale for $\mathcal{O}(1)$ couplings.

LFV — $\tau \rightarrow \mu(e)\gamma$

- Physics background: Z→TTY, T→µvv
- Current bound: 2.7*10* (Babar) FCC-ee estimation: 2*10*
- Key distribution: M(μγ), E(μγ)
 - Signal resolution: σ(m) = 26 MeV, σ(E)=850MeV (Ecal energy resolution ⊕ Track momentum resolution @ Position resolution, from Mogens' paper)
 - Background surviving: 1*SF ~ 25k
- Sensitivity: 10-19

LFV — Z→µe

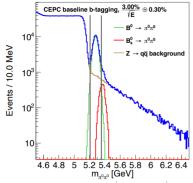
- Physics background: Z→bhabha/uu/TT
- Current bound: 7.5*10-7 (ATLAS) FCC-ee estimation: 10-9
- · Key distribution:
- u/e mis-id rate: by sacrificing the id efficiency, barely bhabha/µµ surviving (except for muon decay: 10-7)
- . Invariant mass: no TT surviving

CEPCW52021

Sensitivity ~ 10-10

7→π+/-

Channel	Ζ→τμ	Z→µe	τ→μγ	τ → 3μ	Ζ→ππ	π0	Ζ→J/ψ γ	Ζ→ργ	W-/+
Current Bounds/ BR prediction	1.2*10-5	7.5*10-7	4.4*10-8	2.1*10-8	10-12	10 ⁻⁸ ~10 ⁻⁵	2.6*10-6	10 ⁻⁹	7.5*10-5
Earlier Estimation	10-9	10-9	10-9	10-10	-	-	10-8	10-9	10-10
FullSim Estimation	10-9	10-9	10-10	10-10	10-10	10-9	10 ⁻⁹ ~10 ⁻¹⁰	10-9	10-10

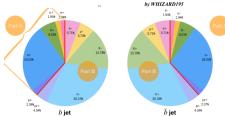

Powerful limits when combining Z and τ LFV decay channels!

Lingfeng Li

Hadronic and Inclusive B **Decays**

Materials from Hanhua Cui's and Yuexin Wang's talk.

Fully neutral $B_{(s)} \to 2\pi^0$ channel:



Accuracy	$B^0\to \pi^0\pi^0$	$B^0{}_s\to\pi^0\pi^0$
17%/√E⊕1% (CEPC baseline)	~1.32%	~23.1%
3%/√E⊕0.3% (σ _{mB} ~30 MeV)	~0.44%	~4.4%

~36 times better than the current world average precision ~5 times better than the anticipated accuracy at the Belle II

${\it Z} ightharpoonup b ar b$ Percent of B hadrons of b jet and ar b jet

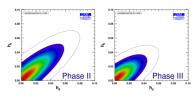
Inclusive flavor charge tagging

CKM Measurements

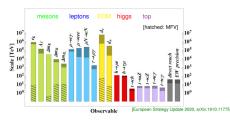
FCC-ee proposed target [Abada et al., 2019]:

Observable / Experiments	Current W/A	Belle II (50/ab)	LHCb-U1 (23/fb)	FCC-ee
CKM inputs				
γ (uncert., rad)	$1.296^{+0.087}_{-0.101}$	1.136 ± 0.026	1.136 ± 0.025	1.136 ± 0.004
$ V_{ub} $ (precision)	5.9%	2.5%	6%	1%
Mixing-related inputs				
$\sin(2\beta)$	0.691 ± 0.017	0.691 ± 0.008	0.691 ± 0.009	0.691 ± 0.005
ϕ_s (uncert. rad 10^{-2})	-1.5 ± 3.5	n/a	-3.65 ± 0.05	-3.65 ± 0.01
$\Delta m_d (\mathrm{ps}^{-1})$	0.5065 ± 0.0020	same	same	same
$\Delta m_s (\mathrm{ps}^{-1})$	17.757 ± 0.021	same	same	same
$a_{\rm fs}^d (10^{-4}, {\rm precision})$	23 ± 26	-7 ± 15	-7 ± 15	-7 ± 2
$a_{\rm fs}^s$ (10 ⁻⁴ , precision)	-48 ± 48	n/a	0.3 ± 15	0.3 ± 2

The goal at CEPC shall be similar, but validation is necessary.


CPV in mixing, BSM may not contain an m_c^2/m_b^2 suppressions specific to the SM

$$A_{\rm SL} = \frac{\Gamma[\overline{B}^0(t) \to \ell^+ X] - \Gamma[B^0(t) \to \ell^- X]}{\Gamma[\overline{B}^0(t) \to \ell^+ X] + \Gamma[B^0(t) \to \ell^- X]}$$


In large classes of BSM models, the dominant deviations from the SM may be in neutral meson mixing amplitudes, with smaller impacts on decay rates

Tera-Z expectation: exp uncertainty $\sim 2.5 \times 10^{-5}$ for both

Removing the bottle neck from $\left|V_{cb}\right|$ measurements:

Contribution from the WW mode

Opportunities to observe CP violating scales \gg TeV!

Summary

- ► CEPC is a powerful machine to study flavor physics.
- ► Flavor studies at CEPC benefit from:
 - Large luminosity (from accelerator physics)
 - 2 Clean environment and moderate energy (from m_Z)
 - 3 Good or even revolutionary detectors (from detector R&D)
- ▶ We need a white paper to form the consensus about what should be done, what chould be done, and what we have done.

- Abada, A. et al. (2019). FCC Physics Opportunities. *Eur. Phys. J.*, C79(6):474.
- Amhis, Y., Hartmann, M., Helsens, C., Hill, D., and Sumensari, O. (2021). Prospects for $B_c^+ \to \tau^+ \nu_\tau$ at FCC-ee.
- Li, L. and Liu, T. (2020). $b \rightarrow s\tau^+\tau^-$ Physics at Future Z Factories.
- Zheng, T., Xu, J., Cao, L., Yu, D., Wang, W., Prell, S., Cheung, Y.-K. E., and Ruan, M. (2020). Analysis of $B_c \to \tau \nu_\tau$ at CEPC.