The 7th China LHC Physics (CLHCP 2021) 25-28 November 2021

Data-driven isolation for charm and beauty decay electrons at RHIC and LHC

Dongsheng Li (李东升)

University of Science and Technology of China (USTC)

Collaborators: Fan Si, Yidan Zhao, Yifei Zhang

Results: Phys.Lett.B 805, 135465

arXiv 2110.08769v2

Outline

Introduction

- Data-driven method
 - Semileptonic decay simulation
 - Beauty contribution extraction
- Results of c/b→e
 - Nuclear modification factor R_{AA}
 - Elliptic flow v_2
- Summary

Heavy quarks: charm & beauty

	m _u , m _d	m _s	٨	QCD	m _c	mb	MeV
1	10	10 ²	T_{c}	$T_{\sf QGP}$	10 ³		104

- Produced early in HIC
 - Calculable by pQCD
 - Numbers are conserved
- Experience full time evolution
 - Sensitive to properties of QGP
 - Energy loss, transport ...

Heavy quarks: charm & beauty

Heavy flavor in sQGP

- Charm is as ordinary as light quarks!
 - Similar suppression of R_{AA}
 - Number-of-constituent-quark (NCQ) scaling v₂
- $m_{\rm b} > 3m_{\rm c}$: Different properties of beauty in the medium?
 - Lower production of b \rightarrow more difficult to reconstruct b-hadrons
 - Smaller B.R. of hadron decay channel \uparrow

Data-driven method

2286.46 ± 0.14

 $(3.95 \pm 0.35)\%$

Dongsheng Li / USTC CLHCP 2021, 25-28 November 2021

60.7

c-hadron spectra

	200 GeV Au+Au		5.02	2 TeV Pb+Pb	5.02 TeV p+p	
Measurement	Centrality	Reference (STAR)	Centrality	Reference (ALICE)	Reference (ALICE)	
D^0	0-80%	PRC 99, 034908		JHEP 2018, 174		
D^{\pm}	0-10%	NDA 067 620 622	0-10%		JHEP 05, 220	
D _s	10-40%	NPA 907, 020-025	& 30-50%			
$\Lambda_{\rm c}/{ m D}^0$	10-80%	PRL 124, 172301	30 30 /0	JPCS 1602, 012031	arXiv:2011.06078	
J/ψ	/	/	0-20% & 20-40%	PLB 805, 135434	JHEP 05 (2021) 220	

c-hadron decay electrons

- Semileptonic decay simulations Goutput electron spectra
 - Norm. by cross sect., B.R. & N_{bin}

•
$$b \rightarrow e = HFE - c \rightarrow e$$

• $c \rightarrow e = D^{0} \rightarrow e + D^{\pm} \rightarrow e + D_{s} \rightarrow e$
• $+ \Lambda_{c} \rightarrow e (+ J/\psi \rightarrow e @ LHC)$

Beauty contribution

- $f^{b \rightarrow e} = b \rightarrow e/HFE$
- $J/\psi \rightarrow e$ in ALICE HFE

- Consistent f^{b→e}_{pp} at LHC and RHIC energies
 Reference for HIC
- Slightly higher $f_{PbPb}^{b \rightarrow e}$ in 0-10% than in 30-50%
- Clearly higher $f_{AA}^{b \rightarrow e}$ than $f_{pp}^{b \rightarrow e}$

• Both $R_{AA}^{b \rightarrow e}$ in 0-10% & 30-50% consistent with ALICE

- Stronger suppression of charm than beauty
 - Agreement with mass-dependent energy loss: $\Delta E_{\rm c} > \Delta E_{\rm b}$
- Centrality dependence is not very clear

• Both $R_{AA}^{b \rightarrow e}$ in 0-10% & 30-50% consistent with ALICE

- Stronger suppression of charm than beauty
 - Agreement with mass-dependent energy loss: $\Delta E_{\rm c} > \Delta E_{\rm b}$
- Centrality dependence is not very clear

R^{b→e}_{AA} is consistent with STAR and ALICE
Similar beauty energy loss at RHIC and LHC energies

c-hadron and c/b \rightarrow e v_2

•
$$\frac{v_2}{n} = \frac{p_0}{1 + \exp\left(\left(p_1 - \frac{m_T - m_0}{n}\right)/p_2\right)} - \frac{p_0}{1 + \exp\left(\frac{p_1}{p_2}\right)} + p_3 \frac{m_T - m_0}{n}$$

$$m_{\rm T} = \sqrt{p_{\rm T}^2 + m_0^2}, n = \#$$
 constituent quarks

• Invariance of v_2/n as a function of $(m_T - m_0)/n$ (NCQ scaling)

- D meson v_2
- $\Lambda_c v_2$: assumed following NCQ scaling
- Simileptonic decay simulation • φ sample: $\frac{dN}{d\varphi} = 1 + 2v_2 \cos(2\varphi)$

v₂ isolation @ RHIC

- First observation of non-zero $v_2^{b \rightarrow e} @ p_T > 3 \text{ GeV}/c$ (4- σ , $\chi^2/ndf = 29.7/6$)
- Beauty is unlikely thermalized at RHIC (too heavy to be moved)
 - Smaller $v_2^{b \rightarrow e}$ than NCQ scaling hypothesis @ 2.5 < p_T < 4.5 GeV/c ($\chi^2/ndf = 14.3/4$)

v₂ isolation @ LHC

- Beauty is still not thermalized at LHC energy
 - Smaller than NCQ scaling @ $2 < p_T < 8 \text{ GeV}/c (5.04-\sigma, \chi^2/ndf = 37.60/5)$

Summary

- Centrality dependence of R_{AA} is not clear at LHC
- Stronger suppression of charm than beauty in HIC
 - Similar at RHIC and LHC energies
 - Consistent with mass-dependent energy loss
- Observation of non-zero $v_2^{b \rightarrow e}$ at RHIC ($p_T > 3 \text{ GeV}/c$) and LHC
- Clear deviation of $v_2^{b \rightarrow e}$ from NCQ scaling
 - Beauty is unlikely thermalized at RHIC and LHC

Thank you!

Back up

Light flavor in sQGP

• High $p_{\rm T}$

- Energy loss
 - R_{AA} suppression
- Jet quenching

$$R_{\rm AA}(p_{\rm T}) \equiv \frac{1}{\langle N_{\rm bin} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}$$
$$v_2 \equiv \langle \cos[2(\varphi - \psi_{\rm R})] \rangle$$

- Low-to-intermediate $p_{\rm T}$
 - Partonic collectivity
 - Azimuthal anisotropy
 - Number-of-constituent-quark (NCQ) scaling v₂

• Strong interaction: light quarks & strongly coupled QGP

QGP dynamics: Energy loss

- Elastic (collisional) and inelastic (radiative) medium effect.
- Theoretical mass-dependent energy loss: $\Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

- Nuclear modification factor $R_{AA}(p_T) \equiv \frac{1}{\langle N_{bin} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$
 - Signal for QGP existence and parton energy loss.
 - Energy loss $\rightarrow R_{AA} < 1$ at intermediate-to-high p_{T} .

• Both $R_{AA}^{b \rightarrow e}$ in 0-10% & 30-50% consistent with ALICE

- Stronger suppression of charm than beauty
 - Agreement with mass-dependent energy loss: $\Delta E_{\rm c} > \Delta E_{\rm b}$

- Consistent $R_{AA}^{b \rightarrow e}$ with ALICE
 - Similar beauty energy loss at RHIC and LHC energies

QGP dynamics: Collectivity

- Initial asymmetry of HIC \rightarrow Azimuthal anisotropy
- Parton thermalization \rightarrow Collective flow

- Fourier: $E \frac{\mathrm{d}^3 N}{\mathrm{d}^3 p} = \frac{\mathrm{d}^2 N}{2\pi p_{\mathrm{T}} \mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \{1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi \psi_{\mathrm{R}})]\}$
- Elliptic flow $v_2 \equiv \langle \cos[2(\varphi \psi_R)] \rangle$ (2nd coefficient)
 - Description of collective motion and thermalization of partons.
 - Azimuthal anisotropy $\rightarrow v_2 > 0$ at low-to-intermediate $p_{\rm T}$.

B-meson spectrum unfolding

- Assume B-meson spectrum follows Levy function
- Apply iteration
 - Simulate B-meson semileptonic decay and obtain $B \rightarrow e$ spectrum
 - Change Levy parameters
- Until decay electron spectrum fits $b \rightarrow e$ data points

HFE v₂ parameterization

