Status of Chiral Magnetic Wave Studies

Chunzheng Wang
wangchunzheng@sinap.ac.cn
Fudan University (ALICE Shanghai)
Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Chiral Magnetic Wave(CMW) and Observables

- Chiral Separation Effect and Chiral Magnetic Effect are coupled to produce Chiral Magnetic Wave;
- CMW causes an electric quadrupole along the reaction plane-Charge-dependent elliptic flow.

Experimental Result

STAR Collaboration, PRL 114, 252302 (2015).

Local Charge Conservation(LCC)

Build a model that only includes the LCC effect

CZ.Wang et al. PLB 820, 136580 (2021).

Blast Wave + Pair Production

- The BW Model can describes the collective flow.
- The particles with positive and negative charges are emitted at the same position, and their kinematics is related by the four-speed boost of the emission point;
- Only includes the LCC. No CMW at all.

Detector acceptance limit

A. Both in(2,3): Both pos \& neg particles from the zero-charge local area are received;
B. One in(1): Only one type of particle from the area is within the acceptance.

Local Charge Conservation(LCC)

Case(a)/(b) $\quad p_{T}-\eta$ Joint distribution
Different acceptance of particles of Case(a)/(b)

- Same trend p_{T}, opposite trend η;
- $\nu_{2}^{\text {Bothin }}>v_{2}^{\text {Onein }}$.

More "One in" positive particles

$$
A_{c h}>0: v_{2}^{\text {onein }}<v_{2}^{+}<v_{2}^{-}<v_{2}^{\text {bothin }}
$$

More "One in" negetive particles

$$
A_{c h}<0: v_{2}^{\text {onein }}<v_{2}^{-}<v_{2}^{+}<v_{2}^{\text {bothin }}
$$

Two Sources of LCC

WY Wu et al. PRC 103, 034906 (2021).

- Resonance decay(a, b, c): Daughter Particles are emitted at the same space-time position;
- String fragmentation (A, B, C): Particles come from both ends of the string.

Study LCC by charge-dependent transverse momentum

r from string fragmentation model and resonance decay are close to the results of CMS.

Event Shape Engineering(ESE)

J.Schukraft et al. PLB 719, 394-398 (2013).

$$
\begin{aligned}
Q_{n, x} & =\sum_{i}^{M} \cos \left(n \phi_{i}\right) \\
Q_{n, y} & =\sum_{i}^{M} \sin \left(n \phi_{i}\right) \\
q_{n} & =Q_{n} / \sqrt{M}
\end{aligned}
$$

q_{2} has the following relationship with v_{2}

$$
\left\langle q_{2}^{2}\right\rangle \simeq 1+\langle(M-1)\rangle\left\langle\left(v_{2}^{2}+\delta_{2}\right)\right\rangle
$$

ESE in the study of CME
Select events via q_{2} : Events in the neighborhood of q_{2} have the same initial collision geometry.

Constraining the CMW with ESE

CMW-only events generated by AMPT LCC-only events generated by BW

	CMW	LCC
r vs .v2	Independent	Proportional
cov vs.v2	Independent	Proportional

Leading a method which can extract the fraction of CMW in the experiment.

Analysis Process

a and b are the slope and intercept of the fitting, $\left\langle v_{2}\right\rangle$ is the elliptic flow in a event

Searching for CMW by ESE in the ALICE Experiment

- ALICE data analysis by ESE is in progress;

Summary

- Two observables for CMW - the slope r and the covariance of v_{2} and $A_{c h}$.
- LCC is the main background of CMW. The non-uniform cutting of the particle kinematics by the limited acceptance of the detector leads to the LCC contribute to the observables.
- LCC can be studied by charge-dependent transverse momentum. The LCC process-String fragmentation and resonance decay contribute comparable $\Delta\left\langle p_{T}\right\rangle-A_{c h}$ to the Experiment.
- The ESE method can constrain the CMW measurement results and give the fraction of CMW.

Thanks for your attention

Back Up

Models in CMW research (For Experimenters)

Model	Feature or Imitation
PYTHIA, DPMJET, HIJING, ...	Flow \times, LCC $\sqrt{ }$, CMW \times
AMPT	Flow $\sqrt{ }$, LCC \times, CMW $\sqrt{ }$
Blast Wave	Flow $\sqrt{ }$, LCC $\sqrt{ }, C M W \times$

