Spacer configuration optimization for the RPCs based on COMSOL Multiphysics simulation

Lining Mao On behalf of RPC lab INPAC, Shanghai Jiao Tong University

Brief introduction of the RPC

- RPC(Resistive Plate Chamber) is a gaseous detector based on avalanche mode.
- Which uses resistive material(glass, Bakelite) as electrodes.
- Advantages: Efficiency>95%, time resolution ~1 ns(single gap),

easy to build, large area, quite cheap.

• Applications: muon system for ATLAS and CMS, SDHCAL(Calorimetry) ...

- The uniformity of the gas flow in the chamber and the deformation of the electrode plates are critical to the performance and/or aging of RPC.
- During the course of making a RPC, we need spacers to keep the thickness of gas gap uniform. Also, the spacers will affect the gas flow.
- Here a software named COMSOL Multiphysics[®] is used to simulate the gas flow and deformation of the electrodes for RPCs with different spacer configuration by finite element method.

Geometry of RPC models

- \cdot Red arrows show the routine of the gas flow
- \cdot The center part of the chamber marked by the dashed lines is used for result comparison

Velocity inside the chamber(Input: 1L/h)

Model	Α	В	С
Mean velocity(mm/s)	0.238	0.234	0.241
RMS of velocity(cm/s)	0.049	0.045	0.042
RMS/mean	20.3%	19.3%	17.5%

- Shifting the spacers helps to make the distribution of velocity more uniform
- The distribution of velocity gets more uniform after reducing the number of the spacers

Vorticity inside the chamber($\nabla \times v$)

0 0	1/s x10 ⁻³ 45 40 35 36 0 30 25 6 0 30 25 6 0 6 0 20 0 31 0 15 0 0 30 0 0 20 0 0 0 30 0 0 0 30 0 0 0 20 0 0 0 30 0 0 0 30 0 0 0 20 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0 30 0 0 0	1/s 1				
A B C						
	Model	Α	В	С		
Mean vorticity	near spacers region(1/s)	0.0199	0.0198	0.0196		
RMS of vorticity	near spacers region(1/s)	0.0129	0.0129	0.0127		
Mean vorticity exclud	ing the vicinity of spacers(1/s)	0.0022	0.0021	0.0018		
RMS of vorticity exclu	ding the vicinity of spacers(1/s)	0.0028	0.0029	0.0026		

 Shifting the spacers and reducing the number of spacers can reduce the vorticity inside the gas gap (less vortex region) 1/s ×10⁻³

45

Deformation of the glass electrodes

The simulation of chamber deformation on the electrodes is carried out by using pressure of gas flow and an electric field between two electrodes which is applied at 6.6 kV (working voltage of our RPC).

Distribution of the thickness of the gas gap after deformation

- 1.199

- 1.197

- 1.195

- 1.193

1.191

1.185

Thickness of the gas gap after electrodes' deformation

)	istri	ibut	ion	of	the	th	icł	kness	
--	---	-------	------	-----	----	-----	----	-----	-------	--

Model	\mathbf{A}	В	С	
RMS/mean	0.25%	0.25%	0.34%	

Shifting the spacers can slightly lower the deformation

 The increase of the distance between spacers would cause more deformation on both electrodes, but still within 1%

 The uniformity of deformation maintains similar level

Construction and test of the RPCs

· Chambers built in the lab and test under the cosmic ray

Spacer configuration optimization for RPCs based on COMSOL Multiphysics simulation

Construction and test of the RPCs

- · By shifting the spacers, then increase the distance
 - (1) Decrease the spacer number $(100 \rightarrow 95 \rightarrow 76)$, at last a 24% decrease

(2) More active region $(1 - \frac{spaces' space}{chamber's space})$, 99.487% to 99.512% to 99.610%.

- (3) Making the gas to move more uniformly
- (4) Lower vorticity inside the chamber
- (5) Maintaining similar deformation uniformity of the electrodes

arXiv:2108.12843

Spacer configuration optimization for RPCs based on COMSOL Multiphysics simulation

THANKS!

BACKUP

Spacer configuration optimization for RPCs based on COMSOL Multiphysics simulation

Testing for error

4 times for running(deformation), get the maximum value(µm)

1	2	3	4
3.14241452818 <mark>21017</mark>	3.14241452818 <mark>04603</mark>	3.14241452818 <mark>06086</mark>	3.14241452818 <mark>11824</mark>
0	-5.22337E-13	-4.75144E-13	-2.92546E-13

Work to cou Gas	gap(1mm) Glass(1.1m	eld with gla	SS	
			High	voltage: 6.6kV
The middle of spacers Other parameters 	/walls are fixed to avoid	the chamber from mo	oving.	
material	PA66(spacer)	FR4(wall)	Glass	Air
Relative permittivity[1]	4.5	4.5	4.2	10
Density[kg/m^3]	1140	1900	2210	

22

0.15

55

0.25

15

(all from website)

Young's modulus[GPa]

Poisson's ratio[1]

8.3

0.28

Adding the mesh

S 20	a second	5 A			8	2		Sec. 1	2.1	
•	•	•	ं	- 🔶	•	•	٥	•	•	
•	۰	٥	۵	۰	۰	٥	٥	۰	•	
•	•	•	•	ø	۲	•	••	•	•	
•	•	•	•	•	۵	۵	٠	•	•	
ó	•	•	•	٠	٠	•	•	۰.	•	
•	•	٠	٥	ø	۵	•	•	٥	٥	
•	ø	•	0	•	•	•	٥	.	•	
•	Ó	•	۵	•	٥	•	٥	•	•	
•	•	•	0	•	•	٠	0	٥	•	
ø	•	٠	•	0	•	•	•	•	٥	
•	•	•	٥	•	•	•	۰	•	•	
0	•	٥	٥	•	۰	۲	•	•	•	
•	•	•	•	•	•	ó.	•	۵	•	
•	۰	٥	•	۰	٥	•	•	•	•	
٥	•	•	•	٥.	•	۰.	•	•	•	
•	0	•	•	•	0	•	•	•	•	
•	0	•	•	•	•	٥	•	0	•	
•	•	•	•	0	•	•	•	ó	•	
	0	0	0	٥.	0	0	0	0	0	

Sketch for the meshes

Volume of the meshes

mm³

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1