

Institute of High Energy Physics Chinese Academy of Sciences

JHEP03(2021)257 HH→bbyy search with the Run 2 dataset at CMS

CLHCP

26 November 2021

Fabio Monti

Outline

• Motivation for the HH search

• Analysis strategy

• Results

Sensitivity to double Higgs couplings

- HH production is sensitive to the Higgs trilinear coupling λ
- VBF HH is sensitive to HHVV coupling c_{2V}

Consistent model for a λ measurement

- λ-dependent NLO electroweak corrections to single-H XS
- Account for single-H contamination (ttH) in HH signal region

Include ttH-enriched categories in the analysis

- Improve λ sensitivity
- Constrain ttH contamination in HH categories
- Simultaneous measurement of λ and y_t NLO EW

Explored HH final states

- $H \rightarrow bb$: large BR & bkg rejection from heavy-flavour jet ID
- H final states with leptons, γ, or T_h: efficient bkg rejection

Experimental signature and main bkg

- 2 high-energy photons resonant on m_H = 125 GeV
- 2 b-jets resonant on m_H
- + fwd-backward jet pair with large m_{ii} for VBF HH
- Continuum background
 - γγ+(b)jets and γ+(b)jets with one jet misidentified as a γ
 - ttyy and t(t)y+jets with one jet/electron misidentified as a y
- Single H(yy) background
 - resonant on m_H
 - ttH(yy) has similar final state

Analysis strategy

HH categories

• Use full Run 2 dataset (~138 fb⁻¹ of data)

Photon & jet selections

- v selections optimized for CMS
 H→vv measurements
- Consider anti-kT jets with R=0.4
- H→bb jets
 - p_T(jets) > 25 GeV
 - |η(jets)| < 2.5</p>
 - Two jets with highest b-tag score
 - ∘ 70 < m_{jj} < 190 GeV
- VBF HH extra-jets
 - $|\eta| < 4.7$ and $p_{T} > 30$ GeV
 - Jet pair with highest m_{ii}

Event categorization

- Optimize sensitivity to SM, anomalous k_{λ} and c_{2V}
 - 2 four-body mass (M_x) categories targeting VBF HH
 - 3 BDT × 4 M_x categories targeting ggHH 0
 - 8 ttH categories as in PRL125.061801 [ttH(yy) CMS measurement] Ο

Results

- No deviations from SM observed
- **Obs.**(exp.) upper limit on HH signal strength **7.7**(5.2)×SM

Results

Expected sensitivity close to <u>ATLAS bbyy</u>

4.1(5.5)×SM

- No deviations from SM observed
- Obs.(exp.) upper limit on HH signal strength 7.7(5.2)×SM

2D likelihood-scan of (k_{λ}, k_{t})

• k, sensitivity improved through inclusion of ttH categories

Summary

- HH physics offers broad physics program at LHC
 HHVV, tri-H couplings
- $HH \rightarrow bbyy$ among the most sensitive channels
- Non-resonant HH→bbyy search with Run 2 data @CMS
 Results consistent with SM predictions
 σ(HH→bbyy) < 7.7×SM and k_x ∈ [-3.3, 8.5] @ 95% C.L.
- Combination of ttH and HH enriched categories
 - Results consistent with SM predictions

Status of non-resonant HH searches with Run 2 data

Approaching to sensitivity for SM HH **Exciting time ahead!!**

BACKUP

Sensitivity to effective field theory (EFT) couplings

 ggHH production described by 5 diagrams: Modification of total and differential XS

- > Constraints on single couplings, e.g. c_2
- Benchmarks in the 5D parameter space defined to explore the EFT sensitivity <u>JHEP09(2018)057</u>, <u>JHEP03(2020)091</u>

EFT interpretation

Limit on ggHH XS×BR for _____ benchmarks of <u>JHEP04(2016)126</u>

- $\circ\,$ Obs. limits ranging from 0.3 to 1 fb
- \circ Kinematics variations between benchmarks \rightarrow different upp. limit

Exp. $c_{2} \in [-0.4, 0.9]$

Online requirement and photon selections

- Select online events with two high-energy photons
 Shower shape, isolation, and m_{vv}
- MVA-based ID requirement offline
 - ~99% efficiency on photons from primary interaction vertex
 - ~50% rejection on other photons
- Electron veto
- H→yy candidate using lead and sublead y's
 - $\circ p_{T}(\gamma_{LEAD})/m_{\gamma\gamma} > \frac{1}{3} \text{ and } p_{T}(\gamma_{SUBLEAD})/m_{\gamma\gamma} > \frac{1}{4}$
 - 100 < m_{yy} < 180 GeV

 m_{vv} of HH candidates from

Separate ttH(yy) from HH selections

- Important and resonant bkg contribution
 - Maximise separation between HH and ttH events
- low-level information from individual objects
- high-level information from event kinematics
- DNN trained with MC events
 - Signal: SM ggHH + BSM benchmarks
 - Background: ttH(yy)
- Simultaneous
 optimization of ttH-score
 cut and MVA boundaries

Reject continuum background from ggHH selections

- BDT multi-classifier with 3 classes:
 - Signal: SM ggHH + all benchmarks
 - Bkg1: yy+jets and Bkg2: y+jets
- 19 training variables
 - Kinematic
 - Object ID
 - Object resolution
- Optimize categories to maximize S/\sqrt{B} in 2 steps:
- 1. Optimize 3 BDT-score categories together with the ttH score cut
- **2.** Optimize 4 M_X categories \times 3

VBF HH selections

- Sensitivity to SM VBF HH and $c_{2V} = 0$
- BDT multi-classifier with 3 classes:
 - signal: SM + c_{2V} = 0 VBF HH samples
 - \circ bkg1: ggHH, bkg2: $\gamma(\gamma)$ +jets
- Re-use ggHH-BDT variables + additional variables exploiting VBF kinematics
- Separate BDT trainings for $M_x \ge 500 \text{ GeV}$

HH \rightarrow bbyy at ATLAS with 139 fb⁻¹ - overview

- Non-resonant + resonant (spin 0) HH search
- Clean but rare final state:
 - bkg from jets(+ $\gamma\gamma$) $\rightarrow \gamma$ and b-jet ID requirements
 - bkg from ttH(γγ) & ttγγ → veto events with e, µ, or ≥6 jets
- BDT classifiers to separate HH signal from main bkgs
- Four-body mass m^{*}_{bbyy} to improve BSM sensitivity
 - 2 m*_{bbyy} × 2 BDT score cat's for non-resonant
 - m^*_{bbyy} selection around resonance mass for X→HH
- Fit m_{yy} for signal extraction

HH→bbyy at ATLAS with 139 fb⁻¹ - results

No deviations from SM observed

Projection for 3000 fb⁻¹

- Huge number of MC events required
 - use Delphes fast-simulation for particle-detector interaction
- Pre-select events compatible with $HH \rightarrow bb\gamma\gamma$

Main backgrounds

- ∘ **γγ+jets**
- y+jets with one jet
 misidentified as a photon
- single-Higgs background, in particular *ttH*

Projections for SM analysis @14TeV and 3000 fb⁻¹

- $HH \rightarrow bb\gamma\gamma$ is the most sensitive channel with 1.8 σ significance
- Combining all the channels 2.6σ significance

Channel	Significance		95% CL limit on $\sigma_{HH}/\sigma_{HH}^{SM}$	
	Stat. $+$ syst.	Stat. only	Stat. $+$ syst.	Stat. only
bbbb	0.95	1.2	2.1	1.6
bb au au	1.4	1.6	1.4	1.3
$bbWW(l\nu l\nu)$	0.56	0.59	3.5	3.3
$bb\gamma\gamma$	1.8	1.8	1.1	1.1
bbZZ(llll)	0.37	0.37	6.6	6.5
Combination	2.6	2.8	0.77	0.71

Projections for di-Higgs anomalous couplings

- Most stringent constraint from HH→bbyy channel
 - The mass categorization removes the degeneracy between the

