Status of LHCb Upstream Tracker

邹全 Quan Zou (IHEP, CAS) The 7th CLHCP workshop, 25-28 November 2021

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

LHCb Upgrade I

LHCb Phase-I upgrade during LS2:

 $\Box \mathcal{L} = 2 \times 10^{33} cm^{-2} s^{-1}$, 5 times higher than run1&2, expected $\mathcal{L}_{int} = 50 \text{fb}^{-1}$

- Replacing with **new tracking detectors**; at least upgrade electronics for other sub-dectectors
- New electronics with **40MHz** readout, **software-only** trigger

For general LHCb Upgrade, please see the plenary talk by Professor Jike Wang For UT front end ASIC study, please see the presentation by Shuaiyi Liu

Role of UT in Tracking

- Tighten searching window in SciFi Charge determination Reduce ghost rate in long tracks Improve momentum resolution

UT overview

- 4 planes of silicon strips (X,U,V,X)@(0°,5°,-5°,0°), providing stereo measurements
- > 16/16/18/18 staves for layer (X,U,V,X)
- **Modules** mounted on both sides of the stave
- Improved features comparing to previous TT
 - More radiation resilience for sensors
 - Larger coverage
 - **Finer granularity**

Silicon Sensors

Sensors	Туре	Pitch/µm	Length/mm	#Strips	
А	p-in-n	187.5	99.5	512	
В	n-in-p	93.5	99.5	1024	
С	n-in-p	93.5	50	1024	
D	n-in-p	93.5	50	1024	

#sensors 888 48 16 16

Four types of the silicon sensors, 968 in total.

> Finer granularity and radiation hardness in inner-most region

□ Outer region with p-in-n,187.5µm pitch, cost effective

□ Inner region with n-in-p, 93.5µm pitch, radiation-hard

Circular cutout near the beamline

SALT: Silicon ASIC for LHCb Tracking

- > 128 channels with 6-bit ADC (1-bit for polarity), 40MHz readout, 4192 ASICs in total
- > Wire-bonded to the sensor
- > Fast shaping time/return to baseline
 - $\Box T_{peak} \leq 25$ ns, less than 5% after 2 T_{peak}

- > DSP^[1] features
 - Per channel TrimDAC correction
 - Pedestal and common mode subtraction
 - Zero suppression
 - Data formatting...

[1] DSP: Digital Signal Processing

Sensor & ASIC combined test

- Beam test at Fermilab in March 2019
- □ Type B sensor irradiated to 2x maximum dose, 94% efficiency and S/N~11, partially due to readout limitation

Final system expected to have single-hit throughout experiment lifetime

SALT 3.0 Readout ASIC" (2019) DOI:10.2172/1568842

UT integration

Institute of High Energy Physics Chinese Academy of Sciences

Chinese members contributing to UT

 3 staff: Jianchun Wang, Yiming Li, Shanzhen Chen
2 visiting scientists: Mark Tobin, Petr Gorbounov
4 postdocs: Nathan Grieser, Yu Lu, Ina Carli, Baasansuren Batsukh
PhD students: Quan Zou, Shuaiyi Liu, Shuqi Sheng, Xiaojie Jiang, Zan Ren*, Feihao Zhang**, Bo Chen**

* Tsinghua University** Hunan University

Beam test

□ At CIAE (China Institute of Atomic Energy) Beijing, in December 2020 □ At CSNS (China Spallation Neutron Source) Dongguan, in October 2021

At CSNS

For more details, see Shuaiyi's talk

ECS^[1] & DSS^[2] development

Developing control system for slice test

odule Pahel Scale

LV QA panel for slice test

DCBs&hybrids configuration

/rea	

Panel Design

□ HV patch panel in D3 region LV spliter in SBC region

> HV power supply in D3 region

HV patch panel

11

Institute of High Energy Physics Chinese Academy of Sciences

LV spliter in SBC region

@Designed and produced by the HNU group

UT installation preparation

Infrastructure preparation: cabling, soldering, splicing and mechanical tests

Status at CERN

Most of the key infrastructures (LV, HV routing) have been processing well **25 staves** arrived at CERN (out of 68)

Finished the essential DAQ and control system for surface test

Summary

- LHCb Phase-I upgrade $\Box \ \mathcal{L} = 2 \times 10^{33} cm^{-2} s^{-1}$, $\mathcal{L}_{int} = 50 \text{ fb}^{-1}$, 40MHz readout with software-only trigger UT: a new silicon strip detector is being constructed, as a key component of U1 tracking system
- Chinese members have made significant contributions in many fields
- The installation of UT is in critical period now

Thanks for your attention!

· 中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

