Search for Resonant/Non-resonant VHH with the ATLAS Detector

Zhongyukun Xu, Tong Li, Lianliang Ma Shandong University

CLHCP 2021 25-28 Nov, Online

Overview

Analysis targets either resonant or non-resonant models with a W/Z and two SM higgs bosons (hh) in the final state.

• Only $h \rightarrow bb$ is considered, for simplicity and for the sake of high statistics.

- Considering multiple final states(Zvv/Wlv/Zll) and multiple signal models
- ◆ Three signal models: Non-resonant production with varied hh and vvhh couplings, resonant VH(hh), and resonant A→ZH(hh)

Feynman diagram examples as below:

CLHCP 2021

2

Zhongyukun Xu

Object selection

Signal object definitions:

Object	p_{T}	η	ID	Isolation
jets	> 20 GeV	< 4.5	Tight JVT	Ν
photon	> 150 GeV	$ \eta < 1.37$ or $1.52 < \eta < 2.37$	tight IsEM	FixedCutHighPtCaloOnly
electron	> 7 GeV	$ \eta < 2.47$	Medium LLH	FCLoose
muon	> 7 GeV	$ \eta < 2.5$	Loose ID	FCLoose
taus	> 20 GeV	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.5$	Medium RNN	

- Particle-flow jets, DL1r for b-tagging with 85% efficiency working point*
- Single lepton triggers used in 1/2-lepton channels
- ◆ MET triggers in 0-lepton channel
- Single photon trigger used in γ+jets control region

*corresponding c-jet rejection factor ~3, light-jet rejection factor ~60

Dataset

Background

MC-based:

- W/Z+jets: Sherpa 2.2.1 NNLO with CRs
- ttbar: PowhegPythia8 with CRs
- Single top: PowhegPythia8 NLO
- Photon+jets: Sherpa 2.2.2 NNLO
- ttH: PowhegPythia8
- ttX: PowhegPythia8 NLO
- VVV: Sherpa 2.2.2/2.2.1 NNLO

Data-driven:

Multi-jet: estimated by MJCR

Data: 2015-2018 140 fb^-1

Signal: MadgraphPythia 8 NLO

Zhongyukun Xu

Event selection

Preselection:

- ≥ 4 85% b-jets with *p*T > 20 GeV and |η|
 < 2.5, tagged with DL1r
- 4 jets with leading pseudo continuous btagging scores are selected as signal jets.
- If jets have same pseudo continuous btagging scores, then four jets minimize |m(J1,J2) – 120 GeV| + | m(J3,J4) – 120 GeV| are selected

Pseudo continuous b-tagging score:

- 0 for jets failing the 85% WP
- + 1 for jets passing the 85% WP but failing the 77% WP
- + 2 for jets passing the 77% WP but failing the 70% WP
- + 3 for jets passing the 70% WP but failing the 60% WP
- 4 for jets passing the 60% WP

Event Categorization

Signal Region(SR)

- ➢ OL SR(for ZvvHH signals)
- ➢ 1L SR(for WlvHH signals)
- 2L SR(for ZIIHH signals)
- Control Region(CR)
 - e/mu CR (to constrain ttbar)
 - Photon CR (to constrain Vjets)
- Multi-jet(MJ) Region
 - > 1L MJ (for MJ yield and shape in SR)
 - Photon+jets MJ (for MJ shape in CR)
- Validation Region(VR)

Used in final statistic fits

Not included in fits, but used to extract yields or templates used in final fits

BDT data/mc modeling

0/1/2 lepton signal region

Three orthogonal SRs for different lepton multiplicity

2 lepton

1 lepton

- Exactly 2 same-flavor opposite-sign baseline light, Exactly 1 charged light leptons
- $81 < m_{ll} < 101 \text{ GeV}$

charged leptons $(e^+e^-or\mu^+\mu^-)$

- Exactly 0 taus
- $E_T^{miss} > 30 \text{ GeV}$

0 lepton

- Exactly 0 charged leptons (including taus)
- $E_{\rm T}^{\rm miss} > 150 \text{ GeV}$
- $E_T^{miss,sig} > 12$
- $|\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, h1)| > 1$
- $|\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, h2)| > 1$

$\times NF$ not applied

Zhongyukun Xu

Control regions

- e/mu CR for constraining ttbar, γ+jets CR for constraining V+jets
- Only use b-tagging info in CRs, to constrain flavor composition uncertainties

$e/\mu CR$

- Exactly 2 different-flavor opposite-sign baseline light, charged leptons $(e^+\mu^- or e^-\mu^+)$
- No requirement on *m*_{ll}

γ+jets CR

- Exactly 0 charged leptons
- Exactly 1 photon
- $p_{T,\gamma} > 150 \text{ GeV}$
- HLT_g140_loose

Zhongyukun Xu

Multi-jet estimation

- Estimate Multi-jet in OL, 1L, and γ+jets channels
- For OL, Multi-jet is not explicitly included as a background in the OL region in the fits, but it is implicitly included as an uncertainty, due to the validation region non-closure uncertainties.
- For 1L, Multi-jet CR provide both MJ yields and shape
- For **y**+jets CR, Multi-jet CR provide a template which is float in fit.

0 lepton

• Exactly 0 charged leptons (including taus)

• $E_{\rm T}^{\rm miss} > 150 \text{ GeV}$

1 lepton

the same definition as the 1L SR, except inverting the isolation cut (requiring fail the isolation WP).

γ+jet

the same definition as the γ+jets CR, except inverting the isolation cut (requiring fail the isolation WP).

Zhongyukun Xu

BDT

- BDTs as the final discriminant
- Variables used as listed:

Generally, all three channels use the same basic MVA strategy, with almost the same input variables.

	NR 0L	Hhh OL	AZH 0L	NR 2L	VH(hh) 2L	AZH 2L	NR 1L	Hhh 1L
mh1 + mh2	Х	Х	Х	Х	Х	Х	Х	Х
mh1 - mh2	Х	Х	Х	Х	Х	Х	Х	Х
nJets	Х	Х	Х	Х	Х	Х	Х	Х
HT_Ex	Х	Х	Х	Х	Х	Х	Х	Х
Σ (b-tag scores)	Х	Х	Х	Х	Х	Х	Х	Х
p_T^V				Х	Х		Х	Х
p_T^{hh}	Х	Х		Х	Х		Х	Х
m ^{hh}	Х			Х			Х	
$cosh(\Delta\eta h1) - cos(\Delta\phi h1)$	Х	Х		Х	Х		Х	Х
$cosh(\Delta\eta h2) - cos(\Delta\phi h2)$	Х	Х		Х	Х		Х	Х
$ \Delta y(h1,h2) $	Х	Х		Х	Х		Х	Х
$ \Delta y(V,hh) $				Х	Х			
mh1_fsr8	Х	Х	Х	Х	Х	Х	Х	Х
mh2_fsr8	Х	Х	Х	Х	Х	Х	Х	Х
E ^{miss} _T	Х	Х		Х	Х	Х	Х	Х
mŤVJ							Х	

Zhongyukun Xu

BDTs (Non-resonant)

R30

20

10

0

-10

-20

-30±

-10

ATLAS Internal

BDT (all)

-5

- One BDT per-channel
- For each BDT, train background against sum of SM-only, C3only, and C2V-only signals
- Right plot shows signal efficiency for 98% background rejection
- Resonant BDT follows similar strategy.

ROC BDT curves shown below with different training

Zhongyukun Xu

CLHCP 2021

0.7

0.6

0.5

0.4

0.3

0.2

0.1

10

5

n

Efficiency

Validation Regions

- Five VRs corresponds to three SRs (OL, 1L, and 2L) and two CRs (e/µ and γ+jets), to validate the data/MC modeling on BDT distribution.
- VRs require at least 4 jets, only exactly 3 b-jets.
- Non-closure in VRs taken as uncertainty in the SRs
- BDT distributions shown below in VRs, for H(hh) BDTs

Zhongyukun Xu

Fit Details

- Six regions total for all fits
- 1L channel is further split into W+/W- channels
- BDT score as final discriminant

Plots show SM non-resonant fit result

ATLAS Work in Progress

Zhongyukun Xu

Observed signal strength(Non-resonant)

Observed signal strength as a function of each coupling parameter, fixing the other parameters to the SM expectation.

C3 is constrained in (-36,35), C2 in (-10,12.5)

Observed Limit(Resonant VH(hh))

Observed limits as a function of true mH mass, for resonant VH(hh) production (left: Zhh, right: Whh). Limit results from 260 GeV to 1 TeV, for each process separately comparison.

ZHH gives main contribution in the process.

Summary

- New search for Vhh final states with OL/1L/2L. Three different models are considered, either non-resonant production, or resonant production in the form of either VH(hh) or $A \rightarrow ZH(hh)$.
- The analysis is just partially unblinded, expected to be published by early 2022.

Backup

AZH large width signal interpolation

- For AZH large width signal , not all width (2%~20%) samples are available.
 Interpolation is needed to smear some width samples.
- Use Log-normal-Breit-Wigner function convolutes with narrow width signal to interpolate large width signal.

$$g_L = (f * g_N)(x)$$

$$f = \frac{e^{\frac{-(\ln(x-x_0) - \ln(m)^2)}{2 \times \ln(s)^2}}}{\sqrt{2\pi}(x-x_0)\ln(s)} \times \frac{1}{x^2 + 0.25w^2}$$

- The parameter x0,m,s is derived with 20% large width sample and convolution distribution by narrow width samples.
- Right plot shows large and narrow signal mVHH distribution comparison

AZH large width signal interpolation

- The narrow convoluted distribution is consistent with the large width signal MC distribution (left plot)
- The BDT non-closure test show large width signal shares same distribution with narrow signal(right plot)

BDTs (Resonant)

- Have one BDT per-channel (so three BDTs total for A->ZH and VH(hh)), across all signal points
- ◆ For each BDT, train background against sum of all 10 signal points for that channel
- In fits, select events based on BDT as well as mhh (mass window cut on mH)
- Curves below compare BDTs trained on one signal point, vs. all of them vs. all of them with a mass window cut

Expected Limit(Resonant AZH(hh))

Resonant A->ZH(hh)

Expected Limit(Resonant AZH)

Expected limits as a function of true mH mass, for resonant AZHproduction (left: mH=260, right: mH=350). Limit results from mH=360GeV to 1TeV. The high mH result seems having excess, which is still under checking.

MJCR 1lep

Non-Resonant Ranking

Zhongyukun Xu

ZH(bb)

Zhongyukun Xu

resonant AZH result

Zhongyukun Xu

Systematic (object)

		Name	Number of parameters	notes
	N	FT EFF B [0-1] lup	2	
Flavour-tagging		FT EFF C [0-2] 1up	3	
		FT EFF Light [0-3] lup	4	
		Muon Eff. TTVA STAT	1	
		Muon Eff. Reco Syst. Low PT	1	-
		Muon Eff. Reco Syst.	1	-
		Muon Eff. Reco Stat. Low PT	1	2
Muon		Muon Eff. Reco Stat.	1	2
IVIUON		Muon Eff. TTVA Sys.	1	2
_		Muon Eff. ISO Sys.	1	
uncertainty		Muon Eff. Iso Stat.	1	
uncertainty		Muon ID	1	
		Muon Sagitta Rho	î	-
		Muon MS	i	
		Muon Scale	î	-
_1 .		Muon Sagitta Res Bias	1	-
Electron		EL Eff. Reco. Total 1 NP Corr + UnCorr	i i	
Electron		EL Eff. ID Total 1 NP Corr + UnCorr	1	
upcortainty		EL Eff. Ico Tota 1 NB Corr + UnCorr	1	
uncertainty		EL Eff. Trigger Tet. 1 NP Corr + UnCorr	1	
•		EC Scale All	1	
		EC Beselution All	1	
		EG Resolution All	1	-
		PH ER. ID Uncertainty	1	-
		Jet JV I Eff.	1	-
		Jet GR Jet Pile-up Offset Mu	1	-
		Jet GR Jet Pile-up Onset NPV	1	-
lot	•	Jet GR Jet Pile-up Rho Topology	1	
Jel		Jet GR Jet Eff. NP [1-/]	/	-
		Jet GR Jet Eff. NP 8 rest Term	I	
uncertainty		Jet GR Jet Eta Inter-Calibration Modelling	1	-
anoontainty		Jet GR Jet Eta Inter-Calibration Tot. Stat.	1	
	,	Jet GR Jet Eta Inter-Calibration Non-Closure pos. Eta	1	
		Jet GR Jet Eta Inter-Calibration Non-Closure 2018 Data	1	- T.
		Jet GR Jet Eta Inter-Calibration Non-Closure high-E	1	5
		Jet GR Jet Eta Inter-Calibration Non-Closure neg-Eta	1	
		Jet GR Jet B-JES Response	1	5
		Jet GR Jet Single Particle High PT	1	-
		Jet GR Jet Flavor Composition	1	
		Jet GR Jet JER Eff. NP [1-6]	6	
		Jet GR Jet JER Eff. NP 7 rest Term	1	
		Jet GR Jet Pileup PT Term	1	
		Jet GR Jet Flavor Response	1	
		JET GR Jet Rel. NonClosure AFII	1	AFII samples only
		Jet GR Jet JER Data vs. MC AFII	1	AFII samples only
		Jet GR Jet Punch Through AFII	1	AFII samples only
		MET Soft Trk Reso Perp	1	-
uncertainty		MET Soft Trk Reso Para	1	2
anoontainty		Lumi	1	2
		PRW Data SF	1	

Zhongyukun Xu

Systematic(normalization)

	Name	Shape or Norm.	Channels	Samples	Size
	$\mu(t\bar{t}+\ge 1b)$	Norm	All	$t\bar{t} + \ge 1b$	floating
	$\Delta\mu(t\bar{t}+0b+0c)$	Norm	All	$t\overline{t} + 0b + 0c$	10%
	$\Delta\mu(t\bar{t} + 0b + \ge 1c)$	Norm	All	$t\overline{t} + 0b + \ge 1c$	100%
	$\mu(V+ \ge 3b)$	Norm	All	$Z/W/\gamma + \ge 3b$	floating
	$\Delta\mu(V+\le 2b+\ge 1c)$	Norm	All	$Z/W/\gamma + \le 2b + \ge 1c$	100%
	$\Delta\mu(V+\le 2b+0c)$	Norm	All	$Z/W/\gamma + \le 2b + 0c$	10%
	$\Delta\mu(Z+\geq 3b)$	Norm	All	$Z+ \ge 3b$	20%
	$\Delta\mu(Z+\le 2b+\ge 1c)$	Norm	All	$Z+ \le 2b+ \ge 1c$	20%
	$\Delta\mu(Z+\le 2b+0c)$	Norm	All	$Z+\leq 2b+0c$	20%
Background	$\Delta\mu(W+\geq 3b)$	Norm	All	$W+ \ge 3b$	30%
Dackground	$\Delta\mu(W+\le 2b+\ge 1c)$	Norm	All	$W+ \le 2b+ \ge 1c$	30%
	$\Delta\mu(W+\le 2b+0c)$	Norm	All	$W+ \le 2b + 0c$	30%
normalization	$\Delta\mu(t\bar{t}+V/t/t\bar{t})$	Norm	All	$t\overline{t} + V/t/t\overline{t}$	20%
	$\Delta \mu(t)$	Norm	All	t	20%
	$\Delta \mu(VV)$	Norm	All	VV	20%
	$\Delta \mu(t\bar{t}h)$	Norm	All	tīh	20%
	$\Delta \mu(fakelepton)$	Norm	1L+,1L-	1L MJ	100%
	$\Delta \mu(fake\gamma)$	Norm	γ	fakey	100%
	L0 trig eff.	Shape+Norm.	OL	All backgrounds	
	L0_TT_up	Shape+Norm.	0L	$t\overline{t}/Z/W + 0b + \ge 1c, t\overline{t}/Z/W + 0b + 0c, t$	
	L1_TT_up	Shape+Norm.	1L+,1L-	$t\overline{t}/Z/W + 0b + \ge 1c, t\overline{t}/Z/W + 0b + 0c, t$	
	L2_TT_up	Shape+Norm.	2L	$t\overline{t}/Z/W + 0b + \ge 1c, t\overline{t}/Z/W + 0b + 0c, t$	
	HighPtExtrapB_up	Shape+Norm.	All	All	
	VR0L Non-closure, norm.	Norm.	OL	All backgrounds	5.5%
	VR0L Non-closure, shape	Shape.	OL	All backgrounds	
	VR2L Non-closure, norm.	Norm.	2L	All backgrounds	41.6%
Validation region	VR2L Non-closure, shape	Shape.	2L	All backgrounds	
vanaation region _	VR1L+ Non-closure, norm.	Norm.	1L+	All backgrounds	11.7%
upportainty	VR1L+ Non-closure, shape	Shape.	1L+	All backgrounds	
uncertainty	VR1L- Non-closure, norm.	Norm.	1L-	All backgrounds	11.4%
•	VR1L- Non-closure, shape	Shape.	1L-	All backgrounds	
	VREMU Non-closure, norm.	Norm.	e/mu	All backgrounds	7.4%
	VRGAMMA Non-closure, norm.	Norm.	gamma	All backgrounds	20.5%
	$\Delta \mu$ (take lepton shape0)	Shape	1L+,1L-	IL MJ	
	$\Delta \mu$ (fake lepton shape1)	Shape	1L+,1L-	1L MJ	
	$\Delta \mu$ (fake γ contam)	Shape	γ	fakey	

Systematic(theory)

		Name	Channels	Samples	Size
	op)	Matching $(t\bar{t} + \ge 1b)$	All	$t\bar{t} + \ge 1b$	6.0%
		$Matching(t\bar{t} + 0b + \ge 1c)$	All	$t\bar{t} + 0b + \ge 1c$	7.3%
		$Matching(t\bar{t} + 0b + 0c)$	All	$t\overline{t} + 0b + 0c$	3.8%
		Shower $(t\bar{t} + \ge 1b)$	All	$t\bar{t} + \ge 1b$	16.7%
		Shower $(t\bar{t} + 0b + \ge 1c)$	All	$t\bar{t} + 0b + \ge 1c$	19.5%
		Shower $(t\bar{t} + 0b + 0c)$	All	$t\bar{t} + 0b + 0c$	0.3%
Tan		Matching(s-top)	All	t	5.4%
юр		Shower(s-top) All		t	27.4%
(++barc ton)		Interference(s-top)	All	t	12.0%
(lubar,s-lop)		s-top_Scale	All	t	
		ttbar2b_ISR_a_s_up	All	$t\bar{t} + 0b + 0c$	
	_ I	ttbar2b_FSR_up	All	$t\overline{t} + 0b + 0c$	
		ttbar2b1c_ISR_a_s_up	All	$t\bar{t} + 0b + \ge 1c$	
		ttbar2b1c_FSR_up	All	$t\bar{t} + 0b + \ge 1c$	
		ttbar4b_ISR_a_s_up	All	$t\bar{t} + \ge 1b$	
		ttbar4b_FSR_up	All	$t\bar{t}+\geq 1b$	
		ttbar2b_Scale_muRmuF_up	All	$t\bar{t} + 0b + 0c$	
		ttbar2b1c_Scale_muRmuF_up	All	$t\bar{t} + 0b + \ge 1c$	
		ttbar4b_Scale_muRmuF_up	All	$t\bar{t} + \ge 1b$	
		t_FSR	All	t	
	L	t_ISR_alpha_s	All	t	
	ſ	Z4b_Scale_muRmuF_up	All	$Z/W/\gamma + \geq 3b$	
Z+iets	\neg	Z2b1c_Scale_muRmuF_up	All	$Z/W/\gamma + \le 2b + \ge 1c$	
_ j==		Z2b_Scale_muRmuF_up	All	$Z/W/\gamma + \le 2b + 0c$	
		vv_Scale_muRmuF_up	All	VV	
		qqgg	All	Vhh	