

Vector Boson Scattering and diboson production with the ATLAS Detector and EFT interpretations

Despina Sampsonidou

Tsung-Dao Lee Institute, Shanghai Jiao Tong University

25-28 November 2021

CLHCP 2021

Motivation

- Electroweak-boson self-interactions are rare processes that are:
 - an probe to the Standard Model predictions
 - a portal to Physics Beyond the standard model, through the Effective Field Theories
- In this talk, I will focus on ATLAS Run-II measurements with integrated luminosity 139 fb⁻¹ of:
 - EW Z(II/vv)γjj
 - WW+>=1jet
 - Dim-6 EFT interpretations
 - Dim-6 EFT combination of various measurements

Vector Boson Scattering

VBS signature at LHC

Event topology

- Two energetic jets with large dijet mass (m_{ii}) and high rapidity separation
- Diboson system, centrally produced with respect to the two forward jets

$Z(\rightarrow II)\gamma jj$: Selection and Background

⁵

using euv events

Z(→II)γjj: Results

• Strategy: fit of the mjj in the Signal and QCD regions

Results

- Measured signal strength with observed significance 10σ
 - µEWK=0.95+-0.08(stat.)+-0.11(syst.)
- EWK cross section predicted from Madgraph5+PYTHIA
 - $\sigma_{EW}(pred) = 4.73 \pm 0.01 \text{ (stat.)} \pm 0.15(PDF)+0.23-0.22(scale) \text{ fb}$
- Fiducial cross-section in the signal phase space measured with 13% overall uncertainty
 - $\sigma_{EW}(obs.) = 4.49 \pm 0.40 \text{ (stat.)} \pm 0.42 \text{(syst.) fb}$

Electroweak $Z(\rightarrow vv)\gamma jj$ production

- 1st Observation of EW Zyjj process in neutrino channels at ATLAS with 5.2 σ significance
- Selection of events:
 - all events containing leptons are vetoed
- Main background:
 - QCD $Z(\rightarrow \nu\nu)\gamma$ + jets and $W(\rightarrow \ell\nu)\gamma$ + jets events in which the lepton from the W decay is lost mostly because it falls outside of the pT or η acceptance

arXiv:2109.00925

Z(→vv)γjj: Results

 Fit strategy: 4-bin mjj distributions in SR and CRs. Backgrounds are constrained in the fit in the signal region and the respective control regions

$\mu_{Z\gamma_{ m EW}}$	$\beta_{Z\gamma_{ m strong}}$	$\beta_{W\gamma}$
1.03 ± 0.25	1.02 ± 0.41	1.01 ± 0.20

Measured signal strength with observed significance 5.2σ

 μ_{EW} = 1.03 ± 0.25

- Theoretical fid. cross section: $\sigma_{EW}(pred) =$ 1.27 ± 0.01 (stat.) ± 0.17(QCD MadGraph scale) ±0.03(PDF) fb
- Measured fiducial cross-section: σ_{EW} = 1.31 ± 0.2 (stat) ± 0.2 (syst) fb

Diboson

W+W- + ≥ 1 Jets Inclusive Measurement

- Measurement of WW pair production with a jet inclusive phase space.
- First time at LHC, differential measurements performed in jet-inclusive phase space
- Serves as portal to BSM interpretations since it is sensitive to TGCs

W+W- + ≥ 1 Jets: Selection and Background

Selection

- eµ channel only
- b-jet veto to reduced large top background
- m_{eµ} > 85 MeV to suppress Drell-Yan background as well as H→WW resonance

Background Estimation

- Main source of background is the top contribution
 - ttbar is estimated with data-driven method, considering two control regions with exactly 1 b-tag and exactly 2 b-tags
- Drell-Yan contribution is estimated using the MC
- Fake leptons: data-driven method
- Single top and diboson background estimated using MC

 $\sigma_{fid}\text{=}258\pm4$ (stat.) \pm 25 (syst.) fb with overall uncertainty 10%

EFT Dim-6 operator in W+W- + ≥ 1 Jets

EFT:SM expansion to higher order terms

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \sum_{j} \frac{c_j}{\Lambda^4} O_j + O_k$$

- Experimental Approach to EFTs

 associate the operators to couplings between bosons and fermions
 - Triple gauge couplings can be parametrized in terms of Dim-6 operators
- Final state sensitive to Dim-6 operator Qw→ constraint on Cw
- m_{eµ} used as a discriminant in an enhanced phase space with p_T^{lead.jet} > 200 GeV

Jet $p_{\rm T}$	Linear only	68% CI obs.	95% CI obs.	68% CI exp.	95% CI exp.
> 30 GeV	yes	[-1.64, 2.86]	[-3.85, 4.97]	[-2.30, 2.27]	[-4.53, 4.41]
> 30 GeV	no	[-0.20, 0.20]	[-0.33, 0.33]	[-0.28, 0.27]	[-0.39, 0.38]
> 200 GeV	yes	[-0.29, 1.84]	[-1.37, 2.81]	[-1.12, 1.09]	[-2.24, 2.10]
> 200 GeV	no	[-0.43, 0.46]	[-0.60, 0.58]	[-0.38, 0.33]	[-0.53, 0.48]

EFT Dim-6 combination: WW, WZ, 4I, and Zjj

• Combined EFT interpretation of differential measurements of the following leptonic final states:

Final state	Dataset	Diff. input distributions
WW	36 fb-1	pTlead. lepton
WZ	36 fb-1	mTWZ
4leptons	139 fb-1	mZ2
Zjj	139 fb-1	Δφϳϳ

- Linear combinations of the Dim-6 EFT coefficients are constrained
 - Including only linear terms
 - Including both linear and quadratic terms

- LHC Run2 provides a large amount of pp collision data at a higher center-of-mass energy, giving rise to the observation sensitivity of the gauge boson self-couplings
- New ATLAS measurements of VBS and diboson using the Full Run2 data set with integrated luminosity 139 fb-1 are presented:
 - Z(II) γ VBS, Z(vv) γ VBS observations with 10 σ and 5.2 σ respectively
 - WW+>=1jet differential cross sections and
 - EFT interpretations

W+W- + ≥ 1 Jets: Differential Cross-section

- Differential cross sections obtained using iterative Bayesian unfolding approach
- Various differential distributions
- Good agreement among the MC predictions and data

