LHCb Upgrade Status Report

- Mainly focus on the Chinese groups' contributions, including Upgrade I and II
- Outline:
 - Upgrade I activities: RTA, FPGA-tracking, DPA, SciFi, UT
 - Upgrade II activities: UT, ECAL

LHCb Upgrade Timeline

'Upgrade Ib'

- Currently 'Upgrade I' is under installation and commissioning, and is the next challenge for LHCb
- Upgrade II is another major upgrade planned for 2032

General Status of Upgrade-I

• Chinese groups focus on the **software trigger**, **UT and SciFi**

• Reference: LHCb-TDR-012

Real Time Analysis Project

- For Run3 data taking, LHCb will use a fully software trigger
- Mission: develop and maintain the real-time processing of LHCb data for Run 3 and beyond

π^0 Energy Calibration and Monitoring Development

• A new π^0 energy calibration program as part of the monitoring and calibration system

- An integrated rapid response test framework to monitor performance of high-level quantities
 - Automatic check of differences for selected Merge Requests
 - ✓ Accessing and visualizing counters

Development of Data Persistency

- Selected trigger objects need to be compressed and serialised into binary data suitable for transfer online
- Rewrite Gaudi algorithm for serialisation to accommodate requirements of parallel processing; Add serialisation functionality of selecting trigger objects to be persisted with the new algorithm
- Physics performance of the RTA model is tested with charm benchmark channels
- Signal efficiency is studied as a function of trigger output rate
 - Provide guidance for tuning of selection within the bandwidth limit

VELO Tracking with FPGAs

- Need to move more complex event reconstruction at the earliest stage of the trigger
- Tracking: large combinatorial problem → calls for high parallelization → can be moved on FPGAs using the "artificial retina architecture"
- Prototype system: reconstruction of tracks in the LHCb vertex detector
 - Composed of 52 silicon pixel modules, 38 in the forward region
 - Relatively compact FPGA system
 - Good first test-case for future and larger-scale applications

CLHCP 2021 Page 7

VELO Tracking with FPGAs

- Demonstrated, in simulation, feasibility using a network of 40 FPGAs
 - 4-ring*10 node full-mesh, each ring has enough power to process 1/4 of VELO
- Prove operation of 1 ring of 8 FPGA in Run 3 real DAQ demonstrates the

 Currently testing FPGA cards, and communication between FPGAs and DAQ boards at LHCb coprocessor testbed

Data Processing & Analysis

DPA project created to coordinate offline data processing activities. Main contributions (China):

- Sprucing (reduction of the data from the trigger) development. Sprucing Campaign Manager (2022+)
- Several offline analysis tools' development & maintenance

SciFi Activity Overview

- SciFi: 524,000 SiPM Channels
- SciFi readout ASIC: PACIFIC 64 channel SiPM readout

LHCb SciFi China Group:

- Co-design the PACIFIC Frontend Board (with Heidelberg)
- > Manufacture all 2,528 PACIFIC Boards
- > (100% produced & delivered to CERN)
- Test 1/2 of PACIFIC Boards (another ½ @Valencia, 100% finished)
- Quality Assurance System for PACIFIC chip & boards
 (11 setups @Tsinghua , Valencia, Barcelona and Heidelberg)
- Software: Build new sequence for SciFi specific processing of Testbeam data.

LHCb SciFi - Current Status

6 SciFi C-Frames on the C-Side behind the LHC beampipe. Photo by S. Jakobsen.

Workpack.	C-side						A-side						
	C1	C2	C 3	C4	C 5	C6	C7	C8	C9	C10	C11	C12	
Mechanics	ok	ok	Ok	ok									
Cabling	ok	ok	Ok	ok									
Services: Water NOVEC/vacuum Dry-gas	ok ok ok	ok ++ ok	ok ok										
Modules	ok	ok											
Heating	ok	++											
Electronics	ok												
Optical fibres	ok	ok	ok	ok	ok	ok	++	ok					
Commissioning	ok	ok	ok	ok	ok	ok		++					

256 Front-end Boxes needed for the SciFi

type of status of the FEBs	number
FEBs on Cframes	176
FEBs used on mezzanine floor test setup	2
FEBs ready to be install on Cframe	2
FEBs passed QA , waiting for optical inspection	22
FEBs needs to be repaired	76
Total number of FEBs assembled	278

++ means just ongoing

Upstream Tracker (UT)

- UT is silicon strip detector located upstream of the magnet, key for
 - · Fast tracking and trigger decision
 - Reduction of ghost rate
 - Efficient reconstruction of long-lived particles
- Chinese groups are core members in system design, test and integration

See talk by Quan Zou "LHCb UT upgrade status"

UT System Integration

- Preparation for installation:
 - patch panel design / cabling / optical fibre test / mechanical test / ...
- Design of control and safety software for test and commissioning

HV patch panel

tave Powering	QA Panel	Top LV	'RS	Tu	rn on TCBs from FSM view first!!	Bot	tom LV	RS		
elect your stave:	Select your hybrids:	Hybrid	LVR	Chan	nel Isense Vrs Vreg	Hybrid	LVR	Channel	Isense Vrs Vreg	
o_alpha_S0 o_alpha_S1 o_alpha_S2	Hybrid 1		System RCFATE1 (BOTTOM)		State TREADY - 3 A					Mon 20-tiep-2021 1
beta S0	Hybrid 2	Sub-System	State							
beta_S1		UTLAB_TOP1		- 10	LVB	Channel	Sense correct (load)	Sense voltage (lood	Ostput voltage (mg)	
_beta_S2	Hybrid 3	UTLAB CRATE1 LVR0	NOT READY	- 12	UTLABLAQ2OTDAE CRATEE LORS	Charvel	U. UUUU	0.300	COOC	
_gamma_S0		UTLAS CRATE! LVR1	NOT READY	- 18	UTLABDAQ2 UTLAB CRATEL LVR5 UTLABDAQ2 UTLAB CRATEL LVR5	3	0.000	0.000	0.000	Recipes
_gamma_S1	Hybrid 4	UTLAB CRATES LVR2	NOT READY	1.00	UTLABDA02:UTLAB CRATEL LVRS UTLABDA02:UTLAB CRATEL LVRS	4	0.000	0.000	0.000 0.000	
_gamma_S2		UTLAB CRATEL LVR3		- 12	UTLARDAD2-UTLAB_CRATE1_URS UTLARDAD2-UTLAB_CRATE1_URS	6	0.000	0.000	0.000	Exclude all LVRs
_alpha_X0	Hybrid 5	UTLAB CRATE1 LVP4	NOT READY	1.00	UTLABDAQ2:UTLAB CRATE1 LVR5	0	0.000	0.000	0.000	Enable all LVRs
o_alpha_X1 o_alpha_X2			NOT READY	1.00	UTLABDAQ2:UTLAB_CRATEL_LVR6 UTLABDAQ2:UTLAB_CRATEL_LVR6	2	0.000	0.000	0.000	CHANGE OF CARD
o beta X0	Hybrid 6	UTLAB_CRATE1_LYRS		- 90	UTLABDAQ2:UTLAB_CRATEL_LVR6 UTLABDAQ2:UTLAB_CRATEL_LVR6	3	0.000	0.000	6.000 6.000	Start monitoring
o beta X1		UTLAB_CRATE1_LVP6	NOT_READY	- 30	UTLARDAD2-UTLAR CRATEL LVR6 UTLARDAD2-UTLAR CRATEL LVR6	5	0.000	0.300	6.000 6.000	Anternational
beta X2	Hybrid 7	UTLAS_CRATE1_LVR7	NOT_READY	• 8	UTLABDAQ2:UTLAB_CRATE1_LVR6	1	0.000	0.000	0.000	Stop monitoring
gamma X0		UTLAB_CRATE1_LYR8	NOT READY	- 37	UTLABDAQ2UTLAB CRATEL LVR6 UTLABDAQ2UTLAB CRATEL LVR1	1	0.000	0.000	6.000 0.000	
gamma X1	Hybrid 8	UTLAB_CRATE1_LVR9	NOT_READY	• N	UTLABOA02/UTLAB_CRATEL_URT UTLABOA02/UTLAB_CRATEL_URT	2	0.000	0.000	6.000 6.000	
gamma X2		UTLAB_CRATE1_LVR10	NOT_READY	- 12	UTLABDA02/UTLAB CRATEL LVRT UTLABDA02/UTLAB CRATEL LVRT	4	0.000	0.000	0.000	
	Hybrid 9	UTLAB_CRATEL_LVR11	NOT_READY	- 21	UTLABDAQ2.UTLAB_CRATE1_LVR7	ő	0.000	0.000	0.000	
		UTLAB_CRATE1_LVR12	NOT_READY	- 21	UTLABDAQ2UTLAB CRATEL LVRT UTLABDAQ2UTLAB CRATEL LVRT	7 8	0.000	0.000	0.000	
	Hybrid 10	UTLAS CRATES LVRIS	NOT_READY	- 2	UTLABDA02:UTLAB CRATEL LVR8 UTLABDA02:UTLAB CRATEL LVR8	1	0.000	0.000	6.000	
		UTLAB CRATEL LVR14	NOT READY	- 10	UTLABDAQ2 UTLAB CRATEL LVR8 UTLABDAQ2 UTLAB CRATEL LVR8	3	0.000	0.000	0.000	
Turn On Stave	Hybrid 11	UTLAB CRATEL LVRIS	NOT READY	· 2	UTLABDAQ2:UTLAB_CRATE1_LVR8	5	0.000	0.000	0.000	
		UTLAB CRATEL LVRIE	NOT_READY	1.00	UTLABDAQ2:UTLAB_CRATE1_LVR8 UTLABDAQ2:UTLAB_CRATE1_LVR8	7	0.000	0.300	6.000 6.000	
		orba_orone_errite		100	UTLAEDA02-UTLAE CRATEL LVR8 UTLAEDA02-UTLAE CRATEL LVR9	1	0.000	0.000	E.000 E.000	
					UTLABDAQ2 UTLAB CRATEL LVR9 UTLABDAQ2 UTLAB CRATEL LVR9	2	0.005	0.000	0.000	
					UTLABCA02/UTLAB CRATEL LVR9 UTLABCA02/UTLAB CRATEL LVR9	1	0.000	0.100	0.000	

Radiation test for SALT

- FE chip SALT for UT was modified in 2020 for better radiation hardness, in urgent need of validation given Run3 schedule
- Despite difficult in available facility and travel globally, IHEP team carried two
 radiation tests using Chinese facilities
 - Dec 2020: 120MeV p beam at CIAE, Beijing → demonstrated new SALT chip has significantly improved against Single Event Upset (SEU)
 - Oct 2021: 80 MeV p beam at CSNS, Dongguan → analysis ongoing, estimating the rate of SEU for whole UT at operation

See talk by Shuaiyi Liu "Radiation Study of the LHCb UT Readout ASIC"

Upgrade II

- Factor >5 increase in particle multiplicity (compared to Run 3)
 ~40 interactions per crossing; L~10³⁴ cm⁻² ⋅ s⁻¹; ∫ L ~300 fb⁻¹
- Aim at retaining or improving the Run 3 detector performances but in a more difficult environment
 - More channels:

Increase the granularity of the detectors

Add timing information to use the fact that PVs are spread in time at the interaction over ~100 ps

- Detectors more resistent to radiation effects: Electronics with <65 nm silicon technologies for chips Large power and cooling requirements

- Changes to all parts:
 - Remove HCAL (replace by iron shield before muon detectors
 - Add tracking stations inside the magnet
 - Add TORCH detector in front of RICH2
 - All other detectors replaced by new versions

Timing Information

- Measurement of time of individual particles, with ~10 ps resolution, will allow tracks and clusters to be associated with the correct interaction
- Usage of timing foreseen in VELO, RICH, ECAL and TORCH
 - Information on timing needs to be exchanged between subdetectors: for example for data suppression in software trigger
 - Resolution of 10ps is challenging for the detectors' electronics: R&D needed for new sensor and Front-End ASIC technologies

UT for Upgrade II

- Studies led by Chinese groups started on upgrade of UT at Upgrade II luminosity (2e33 cm⁻²s⁻¹ → 1.5e34 cm⁻²s⁻¹). Simulation studies shows UT has to be upgraded with higher granularity for UII
 - The occupancy (max ~10%) will compromise the performance
 - The data rate would be too high

UT for Upgrade II

- Possible CMOS technologies including LV-CMOS and HV-CMOS; IHEP has started R&D in available HV-CMOS prototype
- UT Framework TDR under LHCC review

Upgrade II Challenges to ECAL

Challenge points:

- Fine granularity to reduce occupancy
- Good time resolution to deal with pile-up
- Radiation hardness to operate at high radiation exposure

Benefits from ECAL upgrade

- An ECAL with good γ/e detection and γ/π^0 separation
 - Important to improve sensitivities of many key measurements
 - Largely expand the physics that can be explored by LHCb

• Main physics cases:

- Lepton-universality violation, e.g. $B^0 \to K^* e^+ e^-$, $b \to c l^- \bar{\nu}_l$
- Photon polarisation , e.g. $B_s^0 \to \phi \gamma$, $\Lambda_b^0 \to \Lambda \gamma$
- CP violation, $B^0_{(s)} \rightarrow J/\psi \pi^0$
- CKM γ measurement with $B \rightarrow D^*X$
- Radiative decays and baryon magnetic moments, e.g. $\Lambda_b^0 \rightarrow J/\psi p K^- \gamma$

Simulation Studies of ECAL

- Pure SPACAL (CERN), SiW (China) and SPACAL+Si mixture (China), three layouts are proposed
 - Energy resolution, time resolution , position resolution, and physics performance under study

| CLHCP 2021| Page 21

Performance Check: SiW Layout

• $1.5 \times 10^{34} cm^{-2}$, $B_s^0 \rightarrow J/\psi \pi^0$

Left: no time matching; right: with time matching of two gammas when reconstruct $\pi 0$; $\pi 0$ time matching to the J/ψ vertex when reconstruct Bs0.

• Current cell size also doesn't work well in high luminosity.

Performance Check: Mixture Layout

Layout setup:

Crystal Material : GFAG Absorber Material : Tungsten SPACAL Cell size : 1.5 *cm*²

Silicon Cell size : 1 cm^2

Silicon thickness : 0.5 mm

- Main advantages of this layout:
 - have good energy resolution and timing resolution
 - can also have good spatial resolution: e.g. using MAPS (~30×30 μ m2) for the silicon layers
 - benefit into $\pi 0$ reconstruction

ALICE: New Forward Calorimeter

Summary and Outlook

- LHCb Upgrade I installation is ongoing; the Upgrade II framework TDR is submitted, with first ideas on the possible design choices
 - Chinese cluster have made and are making very important contributions to several projects
 ► RTA, DPA, FPGA-tracking, SciFi, UT (I)
 ► UT, ECAL (II)
- The ultimate goal is to build a detector to make best use of the HL-LHC phase for flavour physics and more.
 - high resolution timing information is an important idea
 - mixturing of different detector techniques seems quite promising