

Measurement of the jet-particle v₂ in p–Pb and Pb–Pb collisions at 5.02 TeV with ALICE at the LHC

Siyu TANG for the ALICE Collaboration Institute of Particle Physics, CCNU, Wuhan, China Laboratoire de Physique de Clermont, CNRS/IN2P3, Clermont-Ferrand, France The 7th China LHC Physics Workshop (CLHCP2021) - 24/11/2021

Physics Motivation ALICE Detector Inner Tracking System (ITS) vertexing and tracking, $|\eta| < 0.9$ Forward Multiplicity Detector (FMD) **Anisotropic flow** • FMD3: -3.4<η<-1.7, FMD1&2: 1.7<η<5.1 Time Projection Chamber (TPC) $E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}\mathrm{p}} = \frac{1}{2\pi}\frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}\left(1 + \sum_{n=1}^{\infty}2v_{n}\cos\left(\mathrm{n}(\varphi - \Psi_{\mathrm{n}})\right)\right) \quad \text{Flow coefficients} \quad v_{n} = <\cos(\mathrm{n}(\varphi - \Psi_{\mathrm{n}})) >$ Tracking of charged particles n=2, elliptic flow **Elliptic flow** in heavy-ion collisions:: V0 • Low p_T and intermediate p_T : collective hydrodynamic evolution Trigger and centrality • High p_T : path-length dependent parton energy loss in the QGP medium vs.Lett. B 753 (2016) 511-5 • V0C:-3.7<η<-1.7, V0A:2.8<η<5.1 High- p_T particle and jets

In Pb–Pb collisions

- Consistent jet v₂[1] and high-p_T charged-particle v₂ interpreted by jet-quenching In p–Pb collisions
- Non-zero v_2 is observed at high $p_{T[2]}$, while no jet-quenching effect is observed in small collision system ($R_{pPb}[3]$, hadron-jet correlation[4]...)

The v_2 of particles produced in jets is measured:

- lower p_{T} can be accessed
- further separation of hard and soft components in collectivity in small collision system

ALICE v₂^{part}{|Δη|>2} 30-50% > 3 GeV/c > 0.15 GeV/c, p $p_{\tau}^{\text{part}}, p_{\tau}^{\text{jet}}$ (GeV/c) Phys. J. C 80 (2020) 0.15 ATLAS *p***+Pb** √**s**_{NN} **= 8.16 TeV**, 165 nb⁻)-5% centra 0.05 $\rightarrow p_{-}^{\text{jet}} > 75 \text{ GeV}$ *p_*^ [GeV]

Data Sample:

Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV, 2015 Minimum bias triggered events $\approx 60M$

p-Pb, $\sqrt{s_{NN}} = 5.02$ TeV, 2016 Minimum bias triggered events $\approx 520M$

[1] JHEP 1811 (2018) 013 [2] Phys. Lett. B 783 (2018) 95

Analysis Procedure

Extraction of jet yield

- Two-particle correlations to isolate the particles from near-side jet peak,
- Same-sign charged particles at midrapidity ($|\eta| < 0.8$) selected as trigger and associated particles

• Double Gaussian function is introduced to fit the jet signal, the sum of flow harmonics is used to fit the background

• Jet signal and background are extracted separately to calculate S and B

Extraction of jet-particle *v*₂

• For each $(\Delta \varphi, \Delta \eta)$ region, the v_2 of trigger particle in particle pairs can be calculated

- p–Pb: three-particle correlation
- Construct long-range correlation with forward rapidity particles detected in the FMD
- Non-flow contribution is suppressed by subtraction of scaled low-multiplicity event
- Factorization

Pb–Pb: Scalar product method

- Based on the measurement of Q-vector at forward and midrapidity
- Non-flow contribution is suppressed by applying $|\Delta \eta| > 2$

 $4.0 < p_{T}^{trig}(GeV/c) < 5.0$ ALICE Preliminary $2.0 < p_T^{assoc}(GeV/c) < p_T^{trig}$ Pb-Pb (*s*_{NN} = 5.02 TeV TPC-TPC Correlation

 $2.0 < p_{\tau}^{\text{trig}}(\text{GeV}/c) < 3.0$ ALICE Preliminary $1.0 < p_{T}^{assoc}(GeV/c) < 5.0$ p-Pb **√***s*_{NN} = 5.02 TeV

 $2.0 < p_{\tau}^{\text{trig}}(\text{GeV}/c) < 3.0$ ALICE Preliminary p-Pb **√***s*_{NN} = 5.02 TeV $1.0 < p_{\tau}^{assoc}(GeV/c) < 5.0$ TPC-TPC v_2^{trig} Fit

• $v_2(\Delta \varphi, \Delta \eta) = S/(S+B) \times v_2(Jet) + B/(S+B) \times v_2(Background)$

ALI-PREL-491794

• Positive v_2 of particles in jets significantly lower than the inclusive v_2 of charged particles, is **firstly** observed in p-Pb collisions at LHC

• Consistent v_2 is observed with different associated-particle p_T selection

ALI-PREL-491809

• In Pb–Pb collisions, jet-particle v_2 at high p_T is consistent with the reconstructed-jet v_2

• v_2 of jet particles in p–Pb collisions is consistent with jet-particle v_2 and inclusive v_2 in Pb–Pb at high p_T

Summary and Outlook

- First measurement of v₂ of jet particles in p–Pb and Pb–Pb collisions
- Positive jet-particle v_2 in p–Pb collisions is observed, comparable with the high- p_T inclusive and jet-particle v_2 in Pb–Pb collisions
- No dependence on associated-track $p_{\rm T}$ within uncertainties
- Comparison to AMPT models included final-state interactions will be provided