

Measurement of boosted VH($b\overline{b}$) using MVA method at ATLAS

Jingyi Han

Shandong University

China LHC Physics Workshop, 27 Nov. 2021

Overview

> Three VH($q\overline{q}$) stand-alone analyses with full Run 2 dataset:

- VH(*bb*) resolved Eur. Phys. J. C 81 (2021) 178
- VH(*bb*) *boosted* Phys. Lett. B 816 (2021) 136204
- VH($c\bar{c}$) ATLAS-CONF-2021-021, paper draft

V decays:

- $Z \rightarrow v\bar{v}$: "0-lepton";
- $W \rightarrow l\nu \ (l = e, \mu)$: "1-lepton";
- $Z \rightarrow ll \ (l = e, \mu)$: "2-lepton";

> Goal of VH $(b\overline{b}/c\overline{c})$ "legacy analysis": design one coherent, harmonized approach to extract VH $(b\overline{b}/c\overline{c})$ results

Analysis strategy

- No overlap between VH(bb) resolved and VH(cc) analysis
- Possible overlap between VH(bb) boosted and VH(cc) analysis
- Simple combination strategy between VH(bb) resolved and VH(bb) boosted tested at the moment:
 - Use resolved analysis in $p_T^V < 400 \text{ GeV}$ region
 - Use boosted analysis in $p_T^V > 400 \text{ GeV}$ region
 - Add a split at 600 GeV

Event selection

VH($b\overline{b}$) resolved

- ≥ 2 pFlow jets with exactly
 2 b-tags;
- 150 GeV $< P_T^V < 400$ GeV (75GeV $< P_T^V < 400$ GeV in 2L)

VH($b\overline{b}$) boosted

- ≥ 1 large-R calo jet;
- Leading large-R associated with at least 2 VR jets;
 - 2 b-tags in the leading 3 associated VR jets;
- $P_T^V > 400 \text{ GeV}$

Final state discussed in following slides.

VH(*c* \overline{c}) analysis

- ≥ 2 pFlow jets;
- 2 leading jets c-tagged + not b-tagged
- $P_T^V > 150 \text{ GeV}$ ($P_T^V > 75 \text{ GeV}$ in 2L)

Event categorization

	Categories								
	4	00< p_T^V <600Ge	V		$p_T^V > 600 { m GeV}$				
Channel	0 additional b je [:] Signal	dditional b-tagged track jets: Signal region		0 additional b je Signal	≥ 1 add. b- tagged track jets				
	0 add. small-R jets	≥ 1 add. small-R jets	top control region	0 add. small-R jets	≥ 1 add. small-R jets	top control region			
0-lepton	high purity	low purity		high purity	low purity				
1-lepton	high purity	low purity		high purity	low purity				
2-lepton		SR			SR				
Signal:		ttbar:	Ţ	$S_{\text{LL}} = 1800$ 1600 $\sqrt{s} = 13 \text{ TeV}, 1$ 1 lep., ≥ 1 larg 1400 $p_{T}^{V} ≥ 250 \text{ GeV}$ 1200	→ Data 39 fb ⁻¹ ge-R jets, SR Wt, H→bb Diboson (p tī Wt Wt Wt W+jets Z+jets	(μ _{νμ} =0.72) μ _{νz} =0.91)			
q	W/Z P lepton		t t	v 1000 800 600 400 200 Ti 15	Multijet □ Uncertaini □ VH, H→bb	y - × 5 - - - - - - - - - - - - - - - - - - -			
(Feynman dia	igrams at leadin	g order)			2 3 4 5 Node				

N add. small-R jets

Multivariate analysis

- Multivariate analysis used since long time in $VH(b\overline{b})$ resolved analysis
 - New: Introduce also in VH($b\overline{b}$) boosted analysis and in VH($c\overline{c}$) analysis
- Baseline: Boosted Decision Tree (**BDT**)
- Input variables in VH($b\bar{b}$) boosted are inspired by information used in resolved MVA

MVA baseline settings: 1L as an example

	$p_T^{V}>400~{ m GeV}$
MiniNodeSize	5
MaxDepth	3
NTrees	200
nCuts	60
AdaBoostedBeta	0.35

Training and test agreement looks ok.

Boosted MVA fit

- First results of the MVA fit in the boosted regime
- ▶ Fit performed in $p_T^V > 400$ GeV region
 - Split at $p_T^V = 600 \text{ GeV}$
 - HP SR and LP SR merged in $p_T^V > 600 \text{ GeV}$
 - MVA training performed in $p_T^V > 400$ GeV, but evaluated in 400 GeV < $p_T^V < 600$ GeV and $p_T^V > 600$ GeV
- Preliminary studies considering the statistic only

			0L		1L		2L		
			# add small-R jets		# add small-R jets		# add small-R jets		
		0	>=1	0	>=1		>=1		
400-600 no add b-tagged jets		no add b-tagged jets	HP SR LP SR		HP SR	LP SR	SR		
	GeV	add b-tagged jets	CR		CR				F
	>600	600 no add b-tagged jets		(HP + LP) SR		(HP + LP) SR		SR	
	GeV	add b-tagged jets	С	R	CR		- Ort		

Fit in 8 SRs and 4 CRs

Post-fit plots: 1L

HP SR

LP SR

Events / 0.4

1000

800

600

400

200

1.5 Data/Pred.

0.5

-1

CR

SR

CR

Cut-based analysis

\succ Cut based strategy used in the standard alone boosted VH($b\overline{b}$) analysis

Selection	0 lepton channel	1 lepton	channel	2 lepton channel		
		e sub-channel	μ sub-channel	e sub-channel	μ sub-channel	
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	
Leptons	0 VH-loose lepton	1 WH-sig	nal lepton	$\geq 1 \text{ ZH-}si_{2}$	gnal lepton	
		no second VH	I-loose lepton	2 VH-loo	se leptons	
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 250 GeV	> 50GeV	-		-	
p_{T}^{V}		p	$V_{\rm T}$ > 250 GeV			
Large-R jet		at least one large	- <i>R</i> jet, $p_{\rm T} > 250$	GeV, $ \eta < 2$		
Track-Jets	at least two track-	-jets, $p_{\rm T} > 10 {\rm GeV}$	$V, \eta < 2.5, \text{mat}$	ng large-R jet	Same large-R jet cuts as	
<i>b</i> -jets	leading two	track-jets matche	d to the leading	arge-R must be b	p-tagged	MVA analysis
m _J			> 50 GeV			
min[$\Delta \phi(E_{\rm T}^{\rm miss}, \text{jets})$]	> 30°					
$\Delta \phi(E_{\rm T}^{\rm miss}, H_{\rm cand})$	> 120°			-		
$\Delta \phi \ (E_{\mathrm{T}}^{\mathrm{miss}}, E_{\mathrm{T}, \mathrm{trk}}^{\mathrm{miss}})$	< 90°			- 9		
$ \Delta Y(V,H) $	-		$ \Delta Y(V,H) < 1.4$			
m _{ll}		- $66 \text{ GeV} < m_{ll} < 116 \text{ GeV}$				
lepton $p_{\rm T}$ imbalance		$- (p_{\rm T}^{l_1} - p_{\rm T}^{l_2})/p_{\rm T}^Z < 0.8$				
lepton flavor		- two lepton same flavour				
lepton charge		- opposite sign muons				

> Final discriminating variable is **mJ**, the leading large-R jet mass

post-fit plots: 1L (cut based)

HP SR

CR

SR

	cut based	MVA	MVA improvement
0-lepton fit	1.04σ	2.10σ	+102%
1-lepton fit	1.06σ	2.35σ	+122%
2-lepton fit	0.70σ	1.46 σ	+109%
combined fit	1.64 σ	3.48σ	+112%

(Significance are from statistic only maximum-profile-likelihood fit)

- Introduced the VH(bb /cc) "legacy" analysis
- Showed preliminary results for MVA analysis in VH(bb) boosted regime
- > MVA analysis significance improves 112% compared with cut based analysis
- Target date for publication: Moriond 2023

Post-fit plots: mJ vs. BDT (400 600GeV)

LP SR

ATLAS Internal

60 80

-1

ATLAS Internal

1 lep., ≥ 1 large-R jets, LP SR

-0.8 -0.6 -0.4 -0.2 0

 $400 \; \text{GeV} \le p_{-}^{V} < 600 \; \text{GeV}$

_____√s = 13 TeV. 139 fb⁻¹

1 lep., ≥ 1 large-R jets, LP SR

 $400 \; \text{GeV} \le p_{\tau}^{V} < 600 \; \text{GeV}$

- Data

ŧŤ

100 120 140 160 180 200 220 240 260 280

🔶 Data

tī

.....

Diboson

W+jets

Uncertainty

VH, H→bb̄ (μ_{νμ}=1.00)

···· Pre-fit background

0.2 0.4 0.6 0.8

 BDT_{VH}

— VH, H→bb × 5

m_l [GeV]

Diboson

W+jets

W Uncertainty

VH, H→b┣̄ (μ_{νн}=1.00)

···· Pre-fit background

— VH. H→bb × 2

HP SR

CR

Post-fit plots: mJ vs. BDT ($p_T^V > 600 \text{GeV}$)

Cut-based fit

80 100 120 140 160 180 200 220 240 260 60 m_. [GeV] 🔶 Data 70 ATLAS Internal ₩, H→bb (μ_{νн}=1.00) √s = 13 TeV, 139 fb⁻¹ Diboson $60 = 1 \text{ lep.}, \ge 1 \text{ large-R jets, top CR}$ tī $p_{-}^{V} \geq 600 \ GeV$ W+jets UncertaintyPre-fit background VH, H→bb × 2

CR

ATLAS Internal

vs = 13 TeV, 139 fb⁻¹

 $p_{\tau}^{V} \geq 600 \; GeV$

 $60 = 1 \text{ lep.}, \ge 1 \text{ large-R jets, top CR}$

🔶 Data

ŧŦ

Diboson

W+jets

W Uncertainty

VH, H→bb̄ (μ,,,=1.00)

.....Pre-fit background

vH, H→bb × 2

Events / 10 GeV

70F

50

40

30

20

10

Data/Pred. 1 2.0 1.5

Events / 10 GeV

50

40

30

20

Multivariate analysis

- Multivariate analysis used since long time in VH(bb) resolved analysis
 - New: Introduce also in VH($b\bar{b}$) boosted analysis and in VH($c\bar{c}$) analysis

• Baseline: Boosted Decision Tree (**BDT**)

Input variables data/MC (blinded)

mJ and deltaR(b1,b2) are the most important two variables in the training.

Rank	:	Variable	:	Variable Importance
1	:		:	1.789e-01
2	:	deltaRbTrkJbTrkJ	:	1.447e-01
3	:	pTBTrkJ2	:	1.007e-01
4	:	deltaYVJ	:	9.876e-02
5	:	NAdditionalCaloJets	:	9.132e-02
6	:	pTBTrkJ1	:	8.874e-02
7	:	pTV	:	7.915e-02
8	:	absdeltaPhiVJ	:	6.894e-02
9	:	NMatchedTrackJetLeadFatJet	:	6.516e-02
10	:	<pre>bin_bTagBTrkJ2</pre>	:	4.597e-02
11	:	bin_bTagBTrkJ1	:	3.766e-02

MVA fit: Transformation parameter optimization

Transformation of the BDT output distribution: optimise the expected sensitivity and reduce the number of bins

$$Z = z_s \frac{n_s}{N_s} + z_b \frac{n_b}{N_b}$$
 Default :
$$Z_s = 3, Z_b = 2$$

- N_s (N_b): total number of signal (background) events in the histogram;
- n_s (n_b): number of signal (background) events in interval I[k, I] (interval between bin k and I);

The starting point for the transformation is the BDT output distribution with 500 equidistant bins between -1 and 1. The re-binning is then conducted using the following procedure:

- 1. Starting from the last bin on the right of the original histogram, increase the range of the interval I(k, last) by adding one after the other, the bins from the right to the left;
- 2. Calculate the value of Z at each step;
- 3. Once $Z(I[k_0, last]) > 1$, rebin all the bins in the interval $I(k_0, last)$ into a single bin;
- 4. Repeat steps 1-3, starting this time from the last bin on the right, not included in the previous remap (the new last is $k_0 1$), until k_0 in the first bin.

If the statistical uncertainty of the newly formed bin is larger than 20% step 2 is extended until the statistical uncertainty is below 20%.

mJ fit vs. MVA fit: MC stat relative error: 400_600 GeV (1L)

CR

LP SR

HP SR

ggWW_2btag1pfat1pjet_400_600ptv_SR_noaddbjetsr_mJ

ggWW_2btag1pfat1pjet_400_600ptv_SR_noaddbjetsr_boostedmva

21

mJ fit vs. MVA fit: MC stat relative error: $p_T^V > 600$ GeV (1L)

SR

ggWW_2btag1pfat1pjet_600ptv_SR_noaddbjetsr_mJ

MC Stat Rel. Error 0.1 80.0 0.06 0.04 0.02 0 260 60 80 100 120 140 160 180 200 220 240 mBB

ggWW_2btag1pfat1pjet_600ptv_SR_topaddbjetcr_mJ

ggWW_2btag1pfat1pjet_600ptv_SR_noaddbjetsr_boostedmva

22

CR

ggWW_2btag1pfat1pjet_600ptv_SR_topaddbjetcr_mJ

0L post-fit plots: mJ vs. BDT (400_600GeV)

HP SR

LP SR

CR

0L post-fit plots: mJ vs. BDT ($p_T^V > 600 \text{GeV}$)

Events / 20 GeV 35 🕳 Data ATLAS Internal ₩, H→bb (μ_{νμ}=1.00) vs = 13 TeV, 139 fb⁻¹ Diboson 30E 0 lep., \geq 1 large-R jets, top CR tī $p_{-}^{V} \geq 600 \; GeV$ W+jets 25 Z+jets **Uncertainty** ···· Pre-fit background 20 - VH. $H \rightarrow b\overline{b} \times 2$ 15F 10F 5 1.5 Data/Pred 1 0.5 140 160 180 200 80 100 120 220 240 60 m,[GeV] Events / 20 GeV 35 🗕 Data ATLAS Internal VH, H→bb̄ (μ_{νμ}=1.00) √s = 13 TeV, 139 fb⁻¹ Diboson 30 0 lep., \geq 1 large-R jets, top CR tī $p_{-}^{V} \ge 600 \; GeV$ W+jets 25 Z+jets W Uncertainty ···· Pre-fit background 20 — VH, H→bb × 2 15F 10 5 0 0.1 Data/Pred. 2.0 0.5 100 120 140 160 180 200 220 240 60 80 m [GeV]

CR

mJ fit vs. MVA fit: MC stat relative error: 400_600 GeV (0L)

HP SR

LP SR

CR

a WZ_2btag1pfat1pjet_400_600ptv_SR_topaddbjetcr_mJ

WZ_2btag1pfat1pjet_400_600ptv_SR_noaddbjetsr_boostedmva

mJ fit vs. MVA fit: MC stat relative error: $p_T^V > 600$ GeV (0L)

SR

WZ_2btag1pfat1pjet_600ptv_SR_topaddbjetcr_mJ

CR

2L post-fit plots: mJ vs. BDT ($p_T^V > 600 \text{GeV}$)

 p_T^V >600 GeV

mJ fit vs. MVA fit: MC stat relative error (2L)

400_600 GeV

Breakdown

Set of nuisance parameters	Im	pact on	er	ror		
Total	+	0.628	_	0.615	+-	0.621
DataStat	+	0.601	_	0.585	+-	0.593
FullSyst	+	0.183	_	0.189	+-	0.186
Data stat only	+	0.505	_	0.490	+-	0.498
Floating normalizations	+	0.338	_	0.336	+-	0.337
Modelling: VH	+	0.000	_	0.000	+-	0.000
Modelling: Background	+	0.183	_	0.189	+-	0.186
Multi Jet	+	0.000	-	0.000	+-	0.000
Modelling: single top	+	0.000	_	0.000	+-	0.000
Modelling: ttbar	+	0.000	_	0.000	+-	0.000
Modelling: W+jets	+	0.000	-	0.000	+-	0.000
Modelling: Z+jets	+	0.000	-	0.000	+-	0.000
Modelling: Diboson	+	0.000	-	0.000	+-	0.000
MC stat	+	0.183	_	0.189	+-	0.186
Experimental Syst	+	0.000	-	0.000	+-	0.000
Detector: lepton	+	0.000	-	0.000	+-	0.000
Detector: MET	+	0.000	-	0.000	+-	0.000
Detector: JET	+	0.000	-	0.000	+-	0.000
Detector: FATJET		+ 0.00	0	- 0.00	0 +	- 0.000
Detector: FTAG (b-jet)	+	0.000	-	0.000	+-	0.000
Detector: FTAG (c-jet)	+	0.000	-	0.000	+-	0.000
Detector: FTAG (l-jet)	+	0.000	-	0.000	+-	0.000
Detector: FTAG (extrap)	+	0.000	-	0.000	+-	0.000
Detector: PU	+	0.000	-	0.000	+-	0.000
Lumi	+	0.000	-	0.000	+-	0.000

mJ fit vs. MVA fit: Floating normalization

Conditional data fit