# CMS Results on tt+X Production

<u>Joshuha Thomas-Wilsker (IHEP)</u> On behalf of the CMS Collaboration The 7th China LHC Physics Workshop



# Introduction



tt+X = Top pairs produced with additional bb/cc/Z/W/ $\gamma$ Probe of QCD and EW physics

Why?

- tt+HF: tough multi-scale modelling  $\rightarrow$  invaluable to theorists
- t-Z / t-γ couplings play key role in several BSM scenarios

#### Entering precision measurement era:

- Differential comparisons with latest theory predictions
- Effective field theory (EFT) interpretations  $\rightarrow$  anomalous couplings

#### No results shown





EFT in Broad Strokes

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{SM}$ 

Clause Monris . 12d,i

Treat the SM as a low-energy approximation of a more fundamental theory Construct effective lagrangian Incorporates effects from new physics at higher scales Constrain couplings/rare processes

C;



Wilson Coefficients aka WCs

EFT operators: products and derivatives of SM fields

BSM effects: incorporated in momentum expansion

## Overview

| Measurement                | Final state(s) | Int. Luminosity       | Journal Ref.       |     |
|----------------------------|----------------|-----------------------|--------------------|-----|
| tt+γ                       | Single lepton  | 137 fb <sup>-1</sup>  | arXiv:2107.01508   |     |
| tt+γ                       | Dilepton       | 138 fb <sup>-1</sup>  | CMS-PAS-TOP-21-004 | NEW |
| Direct EFT search in t(t)Z | 3, 4 leptons   | 138 fb <sup>-1</sup>  | arXiv:2107.13896   | NEW |
| tt+cc                      | Dilepton       | 41.5 fb <sup>-1</sup> | arxiv:2012.09225   |     |



I'll add a few comments of my own



Dominant systematics: b-tagging, JES, tt modelling







tt+cc arxiv:2012.09225



Incredible precision on subsidiary  $\sigma_{ttbb}^{fid}$  measurement!

First measurement of  $\sigma_{ttcc}$  in dilepton channel along with  $\sigma_{ttbb}$ ,  $\sigma_{ttLF}$  and  $R(\sigma_{ttcc/bb}/\sigma_{ttij})$ 



Dominant systematics: non-prompt lepton bkgd estimate, theoretical







Direct EFT search in 3 & 4 lepton final states

Target of t-Z interaction (least constrained by available data in top sector)

Pioneering work on EFT MVA techniques

Multiclass MVA (ttZ,tZq,other) + <u>NNs target</u> <u>specific EFT effects</u>!





Stronger anomalies = stronger response.



EFT NN distributions used as input to several fits in SR + CRs

Extract confidence intervals for 1, 2 or 5 WCs simultaneously



Dominant uncs: Signal/bkg modelling, photon ID



### CMS: tt+ $\gamma$ (single lepton)

arXiv:2107.0150

Use gen. matching to define prompt  $\gamma$ 

### $\sigma_{\rm incl} = 800 \pm 46({\rm syst}) \pm 7({\rm stat}){\rm fb}$

#### ~6% precision.

### $\sigma_{\rm incl}^{\rm NLO} = 770 \pm 140 ({\rm tot}) {\rm fb}$









11

CMS: tt+ $\gamma$  (single lepton)

<u>arXiv:2107.015</u>

# $p_T(\gamma)$ fit performed at BSM points defined by varied Wilson coefficients values







1D confidence intervals strongest individual measurement to date!







Comparison with 2 cross-section predictions (chi2 and theory unc. for pythia8)

200

220

 $\sigma_{\mathsf{fiducial}}^{\mathsf{t}_{\mathcal{Y}}}$ 

180

138 fb<sup>-1</sup> (13 TeV)

Measurement

Stat. unc.

Stat.+svst. unc.

- MG5+Pythia8

Theory unc.

Many more unfolded photon, lepton and jet kinematic distributions in paper



#### 1D and 2D scans of negative LL value for two W.C's







## Concluding Remarks

Excellent precision in XS measurements of  $tt+Z/\gamma/HF$ 

Precise theory predictions / close collaboration between communities provides interesting comparison

Small under-predictions in tt+X

Unprecedented constraints on t-Z/ $\gamma$  WCs

Impressive progress in EFT searches using novel ML techniques

Standard model is holding up very well so far

Full run 2 updates with improved precision will help understand significance of minor tensions



# Backup



# ATLAS: Combined $tt+\gamma \& tW\gamma$

Absolute and normalised differential XS measurements in fiducial volume

Several variables related to  $\boldsymbol{\gamma}$  and lepton kinematics

Shapes generally well described by MC and NLO theory

Imperfect description using LO MC in a few variables





Having a precise theory prediction is really beneficial!

tt+Z 3, 4 lepton



Fit 8 SR's+CR's

 $\sigma^{\text{incl.}} = 0.99 \pm 0.08(\text{syst.}) \pm 0.05(\text{stat.})\text{pb}$ 

<u>CMS</u> JHEP 03 (2020) 056

Fit 14 SR's+CR's.

 $\sigma^{
m incl.} = 0.95 \pm 0.06(
m syst) \pm 0.05(
m stat)
m pb$ 



#### Events categorised according to # (b)jets and leptons.





 $\sigma^{\overline{\text{NLO}(\text{QCD}+\text{EW})+\text{NNLL}}} = 0.86^{+0.07}_{-0.08}(\text{scale}) \pm 0.02(\text{pdf})\text{pb}$ 

Good agreement. ~ Same 8-9% in theory and measurements!



Extensive study of several differential distributions.

Most distributions in good agreement with NLO/MC

#### <u>CMS</u> JHEP 03 (2020) 056

Differential XS of several observables

Good agreement w. NLO theory prediction and MC simulation

Provide CL intervals for WC's



Both experiments statistically limited in differential XS.



# Direct EFT Search in t(t)X

'Global' approach to EFT targeting on multiple final states  $\rightarrow$  sensitive to many EFT operators

Multilepton events categorised based on: # and charge sum of leptons, # b-jets, # jets





Accounts for SM/BSM interference and interplay between new physics operators

Event weights paramterised by Wilson coeff's directly at detector level



# Direct EFT approaches



#### Top-21-001

 $c_{\mathrm{t}}^{T(\ell)}$ 

[-0.84, 0.84]

|                                                   | Region                                 |                                  |                                     |                                    |            |            |  |  |
|---------------------------------------------------|----------------------------------------|----------------------------------|-------------------------------------|------------------------------------|------------|------------|--|--|
| t configuration                                   | SR-tZq                                 | SR-tīZ                           | SR-Others                           | $SR\text{-}t\bar{t}Z\text{-}4\ell$ | CR WZ      | CR ZZ      |  |  |
| $Dc_{tZ}$                                         | NN-c <sub>tZ</sub> -tZq                | NN- $c_{tZ}$ -t $\bar{t}Z$       |                                     |                                    |            |            |  |  |
| $Dc_{tW}$                                         | NN-c <sub>tW</sub> -tZq                | NN- $c_{tW}$ - $t\bar{t}Z$       |                                     |                                    |            |            |  |  |
| $c_{\phi O}^{3}$                                  | NN- $c_{\phi O}^3$ -tZq                | NN- $c_{\phi O}^3$ -t $\bar{t}Z$ | W                                   | Counting experiments               |            |            |  |  |
| $c_{\varphi O}^{-}$                               | NN-SM (tZq node)                       | NN-SM (tTZ nod                   | le) $m_{\mathrm{T}}$                | Counti                             | ng experii | lients     |  |  |
| $Dc_{\phi t}$                                     | NN-SM (tZq node)                       | NN-SM (ttZ nod                   | le)                                 |                                    |            |            |  |  |
| D and 5D NN-5D-tZq                                |                                        | NN-5D-tīZ                        |                                     |                                    |            |            |  |  |
|                                                   |                                        |                                  |                                     |                                    |            |            |  |  |
| Other V                                           |                                        | WCs fixed to SM                  |                                     | 5D fit                             |            |            |  |  |
| Expected Ob                                       |                                        | oserved                          |                                     | Expected                           | Obse       | erved      |  |  |
| $^{\prime}\mathrm{C}$ / $\Lambda^2$ [ TeV $^{-2}$ | ·]                                     | 95% CL                           | confidence int                      | ervals                             |            |            |  |  |
| C <sub>t2</sub>                                   | $_{\rm Z}$ [-0.97, 0.96] [-            | 0.76,0.71]                       |                                     | [-1.24, 1.17]                      | [-0.8      | 35,0.76]   |  |  |
| C <sub>tW</sub>                                   | $_{\rm V}$ [-0.76, 0.74] [-            | 0.52, 0.52]                      |                                     | [-0.96, 0.93]                      | [-0.6      | 59,0.70]   |  |  |
| $C_{\varphi}^{\circ}$                             | [-1.39, 1.25] [-                       | 1.10, 1.41                       |                                     | [-1.91, 1.36]                      | [-1.2      | 26, 1.43   |  |  |
| $c_{\varphi}($                                    | [-2.86, 2.33] [-                       | 3.00, 2.29]                      | 1                                   | -6.06, 14.09                       | /j [-7.0   | J9, 14.76] |  |  |
| Cq                                                | $_{\rm tt} \mid [-3.70, 3.71] \mid [-$ | 21.65, −14.61] U[                | -2.06, 2.69]                        | [-16.18, 10.4                      | 6] [-19    | .15, 10.34 |  |  |
| $WC/\Lambda^2$ [7]                                | $[eV^{-2}] = 2\sigma$ interval (oth    | ers profiled) $2\sigma$ in       | terval (others fixe                 | ed to SM)                          |            | ĺ          |  |  |
| $c_{ m tW}$                                       | [-3.08,                                | 2.87] [-:                        | $[-2.15,-0.29]\cup[0.21,1.96]$      |                                    |            |            |  |  |
| $c_{ m tZ}$                                       | [-3.32,                                | 3.15]                            | [-2.14,  2.19]                      |                                    |            |            |  |  |
| $c_{\mathrm{t}arphi}$                             | $[-16.98, \cdot]$                      | 44.26] [-14                      | $1.12, -1.46] \cup [32.3]$          | [0, 44.48]                         |            |            |  |  |
| $c_{arphi Q}^-$                                   | [-7.59, 2]                             | [21.65]                          | [-3.45,  3.33]                      |                                    |            |            |  |  |
| $c_{\mathrm{t}G}$                                 | [-1.38,                                | 1.18] [-3                        | $-1.26, -0.69] \cup [0.08, 0.79]$   |                                    |            |            |  |  |
| $c_{ m bW}$                                       | [-4.95,                                | 4.95]                            | [-4.12,  4.09]                      |                                    |            |            |  |  |
| $c_{arphi Q}^3$                                   | [-7.37,                                | 3.48]                            | [-7.21,  2.25]                      |                                    |            |            |  |  |
| $c_{arphi 	ext{tb}}$                              | [-12.72,                               | 12.63]                           | [-9.87,  9.67]                      |                                    |            |            |  |  |
| $c_{arphi 	ext{t}}$                               | [-18.62,                               | 12.31] [-20                      | $20.91, -14.10] \cup [-6.52, 4.24]$ |                                    |            |            |  |  |
| $c_{Q\ell}^{3(\ell)}$                             | [-9.67,                                | 8.97]                            | [-9.91,  9.50]                      |                                    |            |            |  |  |
| $c_{Q\ell}^{-(\ell)}$                             | [-4.02, -4.02]                         | 4.99]                            | [-4.76, 5.83]                       |                                    |            |            |  |  |
| $c_{Qe}^{(\ell)}$                                 | [-4.38,                                | 4.59]                            | [-5.20, 5.36]                       |                                    |            |            |  |  |
| $c_{\mathrm{t}\ell}^{(\ell)}$                     | [-4.29,                                | 4.82]                            | [-5.15, 5.51]                       |                                    |            |            |  |  |
| $c_{\rm te}^{(\ell)}$                             | [-4.24,                                | 4.86]                            | [-4.97,  5.80]                      |                                    |            | 22         |  |  |
| $c_{\mathrm{t}}^{S(\ell)}$                        | ) $[-6.52,$                            | 6.52]                            | [-7.70, 7.70]                       |                                    |            | ~~~        |  |  |

[-1.01, 1.01]

### ATLAS: Combined tt+ $\gamma$ & tW $\gamma$

<u> JHEP 09 (2020) 049</u>

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

Fiducial XS measurement of  $tt_{\gamma}$  and  $tW_{\gamma} \rightarrow compare w$ . recent theory prediction [1,2]

Parton-level selection mimics theory phase-space

OS eµ

![](_page_22_Figure_7.jpeg)

# $\sigma_{\rm fid} = 39.6^{+2.6}_{-2.2}({\rm syst}) \pm 0.8({\rm stat}){\rm fb}$

~ 7% precision!

Measurement in good agreement with NLO theory pred:

$$\sigma_{\rm fid}^{\rm NLO} = 38.5^{+0.56}_{-2.18} (\rm scale)^{+1.04}_{-1.18} (\rm PDF) fb$$

![](_page_23_Picture_0.jpeg)

2L & I+jet final states

#### Fiducial XS precision in I+jets ~11%

#### CMS PLB 803 (2020) 135285

All-hadronic final state

Fiducial XS precision ~32%

![](_page_23_Picture_6.jpeg)

XS higher in data than in predicted in MC

![](_page_23_Figure_8.jpeg)

Fiducial PB official (pb)

Fiducial PI of the (pb)

Total phase space of the phase space space

# ATLAS

Fiducial XS measurement in eµ and I+jets

#### Precision in ≥3b eµ of 13%

Emphasis on differential measurements of observables sensitive to the QCD modelling of additional jets

![](_page_24_Figure_4.jpeg)

![](_page_24_Figure_5.jpeg)

![](_page_24_Picture_6.jpeg)

# tt+bb Summary

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)