

ATLAS Detector Upgrade

Cunfeng Feng (Shandong U.) On behalf of the ATLAS Chinese Clusters

The 7th CLHCP workshop (Nanjing), 28 Nov 2020, Zoom

Roadmap to HL-LHC

-Ac (2)-3 -Intiliaronator tota 2

- The high-luminosity LHC (HL-LHC) is intended to provide 300 fb⁻¹ of data each year
 - An instantaneous luminosity of $\,\mathcal{L}{\sim}7.5\times10^{34}cm^{-2}s^{-1}$
 - pile-up, $< \mu > = 200$
- The ATLAS detector would be upgraded to cope with the increased occupancies and data rates.

The Upgrades of ATLAS Detector

Inner Tracker Strip Detector

- All-silicon Inner Tracker (ITk) with extended coverage (|η|<4) to improved the tracking performance
- IHEP and THU committed to deliver 1000 strip barrel modules (10m² of sensor surface)
- 10% of total strip barrel modules (US 50% + UK 40%)
- Additional contributions to strip barrel system integration, installation and commissioning

Objectives

- Radiation hard readout ASIC design and study
- High performance Strip detector **module production**
- Complex silicon detector **system integration**

ABC-STAR chips with readout architecture redesigned to cope with

- the increased trigger rate
- Significant contributions to design and verification of digital blocks
- Passed Production Readiness Review (PRR) on Oct 2021 Ready to launch production of ABCStarv1

Radiation Hard FE ASICs

Export license available for shipment of chips from CERN to IHEP

- Constructed ISO Class 7 clean room at IHEP
- Most of the instruments required for module production in place
- Production Site Qualification in progress

7th OLHCP

Module Prototyping

- Producing module prototypes exactly following the Quality Control steps ٠
- Produced fully functional electrical modules ٠

Glue Robot

Wire bonding

25*u*m Al

Calibration of glue amount

ire/bonde

teste

Metrology of glue thickness

Produced Modules in IHEP

- 5 LS Modules + 3 SS Modules
 - 2 prototype LS Modules
 - Passed electrical tests with expected noise level
 - SS modules have been sent to UK for stave construction

Channel Number

Module production schedule

High granularity timing detector (HGTD)

ATLAS High Granularity Timing Detector (HGTD)

- Goal: Timing measurement to reduce pileup in HL-LHC
 - MIP timing measurement (30-50ps)
 - 6.4m² area silicon detector
 - Granularity: ~1mm²
 - Radiation hardness : > $2.5 \times 10^{15} N_{eq}$ /cm² and 2MGy
- China group is making leading contributions in HGTD
 - 100% Peripheral electronics boards
 - >33% LGAD sensor
 - 45% module assembly
 - 50% ASIC testing
 - >16% HV system

z position: \pm 3.5 m

ATLAS HGTD project – Leadership

- > ATLAS China is leading HGTD project, taking important management role
- 1st time, China took project leader on ATLAS subdetector
 - Project leader (Joao Guimaraes da Costa, IHEP)
 - Detector Module Level-2 convener (Zhijun Liang, IHEP)
 - Simulation group Level-2 convener (YuSheng , USTC)
 - Risk manager (Zhaoru Zhang , IHEP)
 - Peripheral board and module flex L3 convener (Jie Zhang, II
 - Sensor testing Level-3 convener (Mei Zhao, IHEP)
 - HV system Level-3 convener (Lei Fan, IHEP)
 - HGTD Speaker committee (Yanwen Liu, USTC)

Ultra-fast timing silicon sensor R & D

- Ultra-fast sensor based on Low-Gain Avalanche Diode (LGAD)
- IHEP developed full-size LGAD sensor (15*15 channels)
 - > IHEP team design and testing, IME CAS engineering run
 - Single pad yield 99.3%, good uniformity
 - > Aim to provide >7000 sensors to ATLAS (>33%)

Radiation-hard LGAD sensor

Challenge at HGTD:

Single event burn-out after irradiation at HV (>600V)

- IHEP-IME explored radiation-hard LGAD
 - > Optimized carbon doping
 - Got the most radiation hard LGAD
 - Lowest acceptor removal rate

The most radiation hard LGAD: IHEP-IME Acceptor removal for different LGADs

IHEP team optimized carbon doping acceptor removal rate vs carbon doping

Radiation-hard LGAD sensor

IHEP developed the most radiation-hard LGAD sensor

- Time resolution can reach 35ps even after irradiation
 High charge collection at low bias voltage (300V)
 Low bias voltage to avoid single event burn-out
- No LGAD burn-out at CERN high intensive beam

Charge collection after irradiation from different foundries

Fast ASIC readout chip : ALTIROC

ALTIROC: Radiation-hard fast TDC with 10ps resolution China is responsible for 50% of ASIC wafer testing IHEP tested small ASIC prototype ALTIROC1 Start testing ALTIROC2 (full-size chip in 8-inch wafer)

25 channels **ALTIROC1 ASIC test** TOA 23 22.2 21.2 21.6 21.4 24 -23 21.8 21.6 21.9 21.1 21.9 22 -21 20 21.6 22.1 21.9 22.4 24 19 21.9 22.8 23.4 21.5 22.6 18 17 25.2 22.6 22.6 22.6 21.9 16

Good timing uniformity

ALTIROC2 8-inch wafer

HGTD detector modules

 \succ China will assembly more than 4000 modules (~45%) > IHEP is leading module assembly R & D and production > Design the flexible PCB for module Connector Bump bonding (ASIC + sensor) Components > IHEP developed domestic gantry system Module FLEX HV connecto > Automatic module assembly Vire-bonding LGAD (4 x 2 cm²) \succ Aim to build 10 modules per day ASICs HV wire-bonding

IHEP mini-module in beam test

Peripheral electronics boards (PEB)

- China contributed 100% of Peripheral electronics boards
 IHEP/NJU leading PEB design and prototyping
 - DAQ demonstrator prototype
 read 14 modules @320Mbps

PEB

modules

DAQ demonstrator

- Sensor design and production: USTC-IME-v2 and v2.1 LGAD show promising performance in tests [See Xiao Yang's talk at this WS]
- Measurements of large-array sensors with probe card [See Xiangxuan Zheng and Jiajin Ge's talks at this WS]
- ASIC chip testing: tested ALTIROC1_v2 and v3, prepared to test ALTIROC2 [See Yongkang Cai's talk at this WS]
- Assembly: bare-module hybridization at SINANO

Sensor design and production

- USTC-2.0 and USTC-2.1 sensors are fabricated at IME (produced five 8" wafers for each version).
- USTC-2.0 are irradiated with reactor neutrons at JSI and with 450 GeV protons at CERN SPS
- Preliminary results show promising performances

Sensor wafers after UBM

Plots shown by Gregor Kramberger at HGTD mini-week in 2021/11

- USTC study the impact of a bad pad inside a large LGAD sensor (pads of 15x15 array)
- Very systematic and conclusive studies done with probe card
- Brief conclusion: large currents of a bad pads collected by the grounded guard-ring or other pads nearby via punch-through

15x15 probe card and digital switcher

22

中源 BIAS LVDS Driver

Programmable delay Ext Trig (optional bypass) • Tested v2 and v3 chips: see TOA MUX Ext Trig2 FMC Ext Trig ÇMOS25 Resistor Net RMS vs. delay below, problematic Altiroc L VDS Driver Probe CL PS LVDS DAC HV (for sensor) channels seen. Bias FEE Board • Prepared to test the ALTIROC2 chips 山狮 Altiroc1V2 FPGA开发相 PLL LED

ALTIROC1 ASIC chip measurements

Low Voltage

Power

CMD Pulse

Ext Trigl

PLL

FMC Delay Cell

Progress on the module assembly

- USTC is setting up a production site, expected to be ready in 2022
- SINANO has been studying the bare-module hybridization process
 - First attempt was not successful: shorts between sensor and ASIC chip
 - Second prototype will be ready by end of November and will be tested at

USTC(test system is ready)

Module test system

Optical inspection of the pads on ASIC after bump-bonding

Phase-II RPC upgrade

Full size RPC singlets assembly and test

10

8

6

4

2

0

0

4000

High voltage [V]

2000

6000

8000

Current [uA]

Assembly procedures

- Gas gap training & test
- FE board soldering & connectivity test
- Resistors soldering
- Singlet assembly
- Assembly speed: ~ 2 days / singlet

Test

- Efficiency curves: reach up to 95%
- Cluster size: ~2
- Time resolution: better than 1 ns

2021/11/27

26

Motivation

• To check if FEE works properly in double-end scheme

Double-end readout test with chip-based FEE

- To check the space resolution performance
- Experiment setup
 - FEE board: chip-based, the same with Phase-I production
 - 32 BIS7s RPC gives reference position
 - TDC: V1190 (100 ps resolution)

Reconstruction

- Get $\Delta t x$ relationship
- Reconstruction position and compare with real position

• Results:

- \bullet Double-end efficiency up to 91%
- Space resolution $\sim \! 12 \ mm$

of Reference Channe

27

Prepare for the coming mass production: ~ 300 RPC singlets Basic production procedures and facilities have been established • The manuals of manufacturing processes The QA&QC system

- The online monitor for the qualification test •
- A large cosmic ray trigger system: 1.3 x 2 m² •
- A FPGA based TDC system: 128ch/board
- The flatness check for the honeycomb panels

RPC gas flow simulation and cosmic results @SJTU

- Gas flow and electric-field has been simulated
 - ightarrow New chamber design with 24% less spacer has been built
 - Easier to build
 - Less dead zones
- 1mx1m chambers with "Shifted spacers" has been built and test with cosmic ray.

Submitted to JINST (https://arxiv.org/abs/2108.12843)

- Many activities in several main upgrade projects have been carried out in both Chinese clusters.
 - The inner tracker strip detector production site qualification in progress
 - RPC production procedures and facilities have been established
 - HGTD sensors of both Chinese cluster showing promising performance, the chip testing system developed.

Thank you!

