Search for HH production at the LHC

Yanping Huang (IHEP, CHINA)

中國科学院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

24 - 28th Nov, CLHCP 2021

$V(\Phi) = \frac{1}{2}\mu^2 \Phi^2 + \frac{1}{4}\Lambda \Phi^2$

The Higgs particle is responsible for the masses of elementary particles.

Higgs potential approximation:

$$V(h) = \frac{1}{2} \lambda_{HHH}^{2} \lambda_{2}^{2} \lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2} \lambda_{3}^{2} \lambda_{4}^{2} \lambda_{4}^{2} \lambda_{4}^{2} \lambda_{4}^{2} \lambda_{4}^{4} \qquad \text{with} \quad \lambda_{3}^{SM} = \lambda_{4}^{SM} = \frac{m_{H}^{2}}{2v^{2}}$$

Self-coupling
$$\kappa_{\lambda} = \kappa_{3} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}$$

Higgs self-coupling is crucial to understand the EW symmetry breaking mechanism 2

HH production and decay

rgs production via Vector Boson Fusion

Figure 2: The three tree-level Feynman Diagrams for di-Higgs production via Vector Boson Fust

g

Di-Higgs combination

- Only used partial Run2 dataset
- Assume all kinematic properties of HH pair are same as SM prediction, and only ggF XS can deviate from SM

A sensitivity of ~10*SM for Di-Higgs production rate

Constraint on the Higgs self-coupling

- Kinematic dependence on κ_{λ} is estimated with LO prediction, and K-factor is only estimated with $\kappa_{\lambda}=1$
- Amplitude dependence on κ_{λ} can be expressed with 3 reference samples

Constraint on self-coupling (obs/exp) @ 95% CL: -5.0< κ_{λ} <12.0 / -5.8< κ_{λ} <12.0

Will focus on HH search with full Run2 data

HH→bbbb

Large BR of $H \rightarrow bb$, low S/B

HH→bbbb @ CMS

CMS

HH-++ bbbbg boosted) (a) CMS

000

HH→bbbb (VBF boosted) @ CMS

Observed constraint: $0.6 < \kappa_{2\lambda} < 1.4$

Further constraint is expected with the combination with single H measurement

HH→bbbb (VBF

 Based on early Run2 ggF resolved analysis strategy, optimization for the VBF HH

	Selections					
VBF topology	At least two jets	Two highest- $p_{\rm T}$ jets with opposite sign η				
	with $p_{\rm T} > 30, \eta > 2.0$	$\left \Delta \eta_{jj}^{\text{VBF}}\right > 5.0 \text{ and } m_{jj}^{\text{VBF}} > 1000$				
	Exactly 4 <i>b</i> -tagged jets with $p_{\rm T} > 40$, $ \eta < 2.0$					
Higgs pair Signal topology	If $m_{4b} < 1250$ Selection If $m_{4b} \ge 1250$	$\frac{360}{m_{4b}} - 0.5 < \Delta R_{bb}^{\text{lead}} < \frac{653}{m_{4b}} + 0.475$				
		$\frac{235}{m_{4b}} \qquad < \Delta R_{bb}^{\text{subl}} < \frac{875}{m_{4b}} + 0.35$				
		$\Delta R_{bb}^{\rm lead} < 1$				
		$\Delta R_{bb}^{\rm subl} < 1$				
	Pairs with minimum					
	$D_{HH} = \sqrt{(m_{2b}^{\text{lead}})^2 + (m_{2b}^{\text{subl}})^2} \left \sin \left(\tan^{-1} \left(\frac{m_{2b}^{\text{subl}}}{m_{2b}^{\text{lead}}} \right) - \tan^{-1} \left(\frac{116.5}{123.7} \right) \right) \right $					
Background rejection	Multijet	$ \Delta \eta_{HH} < 1.5$				
		$ \Sigma_i \vec{p_{T_i}} < 60$, where $i = b$ -jets and VBF-jets				
		$p_{\mathrm{T},H}^{\mathrm{lead}} > 0.5m_{4b} - 103$				
		$p_{\mathrm{T},H}^{\mathrm{subl}} > 0.33m_{4b} - 73$				
	$tar{t}$	Veto if $X_{Wt} = \sqrt{\left(\frac{m_W - 80.4}{0.1m_W}\right)^2 + \left(\frac{m_t - 172.5}{0.1m_t}\right)^2} \le 1.5$				
Region definition	Signal region (SR)	$X_{HH} = \sqrt{\left(\frac{m_{2b}^{\text{lead}} - 123.7}{11.6}\right)^2 + \left(\frac{m_{2b}^{\text{subl}} - 116.5}{18.1}\right)^2} < 1.6$				
	Validation region (veto SR)	$\sqrt{\left(m_{2b}^{\text{lead}} - 123.7\right)^2 + \left(m_{2b}^{\text{subl}} - 116.5\right)^2} < 30$				
	Sideband region (veto SR, VR)	$\sqrt{\left(m_{2b}^{\text{lead}} - 123.7\right)^2 + \left(m_{2b}^{\text{subl}} - 116.\overline{5}\right)^2} < 45$				

arxiv:2001.05178

HH→bbbb (VBF) @ ATLAS

HH-->bbbb @ ATLAS

Resolved Analysis

- Targets low-medium mass resonances
- 4 small R-jet (R=0.4)
- 4b signal region

- Targets high mass resonances
- 2 large R-jet (R=1.0)
- 3SR are defined : 2b, 3b, 4b

Figure 8: Kinematic reg reconstructed Higgs boson

Finally, the CR contains

HH-->bbbb @ ATLAS

Resolved Analysis

- 4 small R-jet (R=0.4)
- Targets low-medium mass resonances
- 4b signal region

Boosted Analysis

- 2 large R-jet (R=1.0)
- Targets high mass resonances
- 3SR are defined : 2b, 3b, 4b

HH-->bbbb @ ATLAS

The most significant excess @ 1.1 TeV

•

•

•

- Local significance 2.60 (2.70) for the spin-0 (spin-2) model
- **Global significance 1.0** (1.20) for the spin-0 (spin-2) model

One of the golden channels for HH search

Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

Full reconstructable final state

11 .

- Excellent di-photon resolution
- Large BR of H→bb

$HH \rightarrow \gamma\gamma bb$ (a) ATLAS and CMS

CMS

- Dedicated MVA for ttH suppression
- MVA optimization with the separation of ggH/VBF and m_x cases.

0.6

0.7

0.8

0.9

BDT Score

- **CMS**: 2D fit over $m_{\gamma\gamma}$ and m_{bb} with the negligible correlation treatment
- **ATLAS**: signal extraction in the $m_{\gamma\gamma}$ spectrum over all categories

 $\sigma(pp \rightarrow HH) = 7.7 (5.2) * SM @95\% CL$

JHEP 03 (2021) 257

ATLAS-CONF-2021-016

 $\sigma(pp \rightarrow HH) = 4.1 (5.5) * SM @95\% CL$

HH→bbττ

Medium BR, medium S/B

HH→bbττ @ ATLAS

- Target $\tau_h \tau_h, e \tau_h, \mu \tau_h$: 88% of the total decays
- BDT/NN used to separate signal from background
- Final fit on the BDT/NN output

ATLAS-CONF-2021-030

HH→bbττ @ ATLAS

- Most significant excess τ_hτ_h (τ_{lep}τ_h) for at 1TeV (1.1TeV)
- Combined results @ $m_X = 1$ TeV:
 - a local significance of 3σ and a global significance of 2.0^{+0.4}-0.2 σ

HH-->bblvlv @ ATLAS

• Target for bblvlv final states, dominated by the bbWW* (only signal for the optimization) • p_{HH}

Most discriminate variable with DNN output: $d_{hh} = \ln(-d_{hh})$

l	<i>hh</i> → <i>bbWW*,2ℓ</i> 0.027		2ℓ	hh ightarrow bb au au,2l	<i>hh</i> → <i>bbZZ*,2ℓ</i> 0.003			
				0.009				
(h) v	Observable	SR-SF	SR-DF	Observable	CR-Top	Re VR-1	gion Definitions CR-Z+HF	 VR-2
h	Dilepton Flavour $m_{\ell\ell}$ [GeV]	SF (20, 60)	DF (20, 60)	Dilepton Flavour $m_{\ell\ell}$ [GeV]	DF (20, 60)	SF (20, 60)	DF or SF (81.2, 101.2)	SF (71.2, 81.2) or (101.2, 115)
	m _{bb} [GeV] d _{HH}	(110, 140) > 5.45	(110, 140) > 5.55	m_{bb} [GeV] d_{HH}	∉ (100, 140) > 4.5	> 140 > 4.5	(100, 140) > 0	(100, 140) > 0

۲

25

 $p_{Top} + p_{Zll} + p_{Z\tau\tau}$

HH-->bblvlv @ ATLAS

	-2σ	-1σ	Expected	+1 σ	+2\sigma	Observed
$\sigma (gg \rightarrow HH) \text{ [pb]}$	0.5	0.6	0.9	1.3	1.9	1.2
$\sigma \left(gg \to HH \right) / \sigma^{\rm SM} \left(gg \to HH \right)$	14	20	29	43	62	40

- A counting experiment is performed with a profile likelihood fit.
- No evidence of the HH production is observed
- Observed (expected) upper limit: $\sigma_{HH} < 40$ (29) ×SM @ 95% CL

$HH \rightarrow bbZZ (4l) @ CMS$

- Very rare BR (0.0145%) but very small background + clean H signature peaks
- Final fit to the BDT distribution in data

Observed (Expected) 95% CL < 30 (37)×SM $-9 < \kappa_{\lambda} < 14$ (-10.5< $\kappa_{\lambda} < 15.5$)

HIG-20-004-pas

HH combination of full Run2 deta

CMS

- Individual channel achieve 5-7×SM
 - more data, more sophisticated analysis method

HH combination of full Run2 data

A local significance of 3.2σ and a global significance of 2.1σ @ mX = 1.1 TeV

Self-coupling from single Higgs @ ATLAS

Complement HH direct measurement and provide more stringent constraint.

Self-coupling from single Higgs @ ATLAS

Limited access to possible BSM effect

- No consideration of the kinematic dependence on $k\lambda$ in the single Higgs process
- No consistent EFT predicts only SM coupling variation without new interactions.
- Combine LO and NLO effects in the two measurements with a k-framework

Prospect @ HE-LHC

- Extrapolate ATLAS HL-LHC results to HE-LHC:
 - scale cross-section (*4) from 14TeV to 27TeV and luminosity (*5) to 15ab-1
 - **bbyy**: 7.1 σ with the precison on κ_{λ} of ~20%
 - **bbtt**: 10.7 σ with the precision on κ_{λ} of ~40%
 - Combination: the precision on κ_λ of 10-20%

Summary

- Higgs self-coupling have been measured in most main HH channels with Run2 data, with the benefit from high statistics data, advanced MVA technique, and better reconstruction performance.
- Higgs self-coupling can be indirectly probed with single-Higgs process via NLO-EW correction, it can help to further constrain κ_{λ}
- HL-LHC: 4σ evidence of the HH process with ATLAS and CMS combination.

More promising results are coming soon.