

Institute of High Energy Physics Chinese Academy of Sciences

Evidence for vector boson scattering in semileptonic $l\nu$ qq final states in proton-proton collisions at \sqrt{s} = 13 TeV with CMS

Ram Krishna Sharma On Behalf of CMS Collaboration

> China LHC Physics Workshop (CLHCP - 2021) Tsinghua University and Nanjing Normal University 25-28 November 2021

Vector Boson Scattering

- Tested and measured SM cross-sections over 10 orders of magnitude
- Discovered Higgs
- Still need to understand the mechanism behind the Electroweak Symmetry Breaking Mechanism (EWSB).
- Without Higgs, Vector Boson Scattering (VBS) cross-section violate unitarity at the TeV scale.
 - VBS: the radiated gauge bosons by quarks from the two protons and interact with each other and decay afterwards.
 - VBS measurement gives way to probe the EWSB.
 - Rare process in SM, requires good discrimination against enormous backgrounds.
 - With advancement in ML techniques, provide way to improve signal discrimination
 - First evidence of VBS in WV semi-leptonic channel at LHC.
 - Also, longitudinal polarised WW scattering is probed first time at CMS.

Motivation of WV Channel (V = W/Z)

- WV production in association with two jets
 - Semi-leptonic final state with a boosted & resolved hadronic W/Z •
- Benefits:
 - **larger branching** ratio than same sign analysis WW final state.
 - Full WW invariant mass reconstruction (neutrino pz calculation by • constraining W-boson mass)
 - Contribution from all possible QGC and TGC vertex (for WVij process):
 - γWW , ZWW, WWWW, ZZWW, and WW $\gamma \gamma$

Signal and Background Process

- WVJJ (EWK) : Electroweak production of WVJJ.
- WVJJ (QCD initiated): Irreducible background for analysis. •
- W+Jets: Most dominating background.
- acceptance or inefficiency effects, gives missing energy.
- $t\bar{t} \rightarrow bWbW \rightarrow bl\nu l\nu$, if we mis-measure one lepton and b quark form jets.
- Single top production: Here $t \rightarrow bW \rightarrow bl\nu$, and 3 jets is reconstructed.

Drell-Yan: Z/Gamma decays to I+I- and we mis-measure one lepton because of

tt Jets: Top quark always decays to one b-quark and one W boson. So,

Event Selection

Event selection:

- Two VBS jets
- Two vector bosons WV:
 - Leptonic decays of W bosons into electron and muons with associated neutrinos
 - V = W/Z always decay hadronically. It has two categories:
 - Boosted category: Reconstructed as a fat jet having radius parameter of 0.8
 - Resolved category: Reconstructed as two resolved jets having radius parameter of 0.4

Resolved Category Two jets, pT>30 GeV

Boosted Category One fat jet pT > 200 GeV

Analysis Phase Space

- Control region (CR): Region orthogonal to the signal region
 - W+jet CR:
 - $m_W < 65 \ GeV \ or \ m_W > 115 \ GeV$
 - Top CR: requires \geq 1 b-jets
- Split according to leptons flavour
- Final fit combining all regions

Object selection

Phase space selection

Simultaneous fit regions

Deep Neural Network (DNN) Training

- **Binary DNN** trained with VBS as signal vs all backgrounds
- Separate model for resolved and boosted categories:
 - Resolved category: Fully connected DNN having 64-64-64 nodes with 16 input variables
 - Boosted category: Fully connected DNN having 64-32-32-32 nodes with 13 input variables
- To avoid overtraining dropout layers and L2 weight regularisation was used.

Variable		Boo
Lepton pseudorapidity	\checkmark	
Lepton transverse momentum	\checkmark	
Zeppenfeld variable for the lepton	\checkmark	
Number of jets with $p_{\rm T} > 30 \text{ GeV}$	\checkmark	
VBS leading tag-jet $p_{\rm T}$	-	
VBS trailing tag-jet $p_{\rm T}$	\checkmark	
Pseudorapidity interval between VBS tag-jets	\checkmark	
Quark Gluon discriminator of the highest $p_{\rm T}$ jet of the VBS tag-jets	\checkmark	
Azimuthal angle distance between VBS tag-jets	\checkmark	
Invariant mass of the VBS tag-jets pair	\checkmark	
$p_{\rm T}$ of jets from V_{had}	\checkmark	
Pseudorapidity difference between V_{had} jets	\checkmark	
Quark Gluon discriminator of the V_{had} jets	\checkmark	
$V_{had} p_{\mathrm{T}}$	-	
Invariant mass of the V_{had}	\checkmark	
Zeppenfeld variable for the V_{had}	-	
V_{had} centrality	-	

Background Estimation

- QCD multijet background: Estimated using data-driven method
 - Tight/Loose efficiency for fake (prompt) lepton measured in QCD (Drell-Yan) enriched data sample
 - Construct relation between # prompt/ fake leptons and # passing/failing tight ID •
 - Weight events in Loose data control region by (probability to have at least one non-prompt lepton) x (probability to still pass tight selection)
- W+Jets:
 - Mismodelling of the jet pT spectrum for W+many-jets sample \rightarrow data-driven differential • corrections
 - W+Jets contribution taken from MC but corrected in a data driven way. •
 - Fit their normalization in the global fit in the W+jets CR •
 - After the data driven estimation \rightarrow Predictions and data agree within uncertainties
- Top background: Shape from MC, normalisation extracted from top CR in the final fit to the data

Signal Region

jets and DNN score, for both resolved and boosted case

• Signal region distribution for one of highest ranked variable, di-jet invariant mass of VBF

Systematic Uncertainty

- Systematic uncertainty can affect the shape and normalisation of the DNN distribution.
 - Largest impact is from statistics.
 - Expected as VBS signal is a rare process.
 - Experimental uncertainty is mainly dominated by b-tagging and jet energy scale/resolution

Ņ	Uncertainty source	$ \Delta \mu_{EV} $
	Statistical	0.12
	Limited sample size	0.10
	Normalization of backgrounds	0.08
	Experimental	0.06
	b-tagging	0.05
	Jet energy scale and resolution	0.04
e	Luminosity	0.01
Ŭ	Leptons identification	0.01
	Boosted V boson identification	0.01
	Theory	0.12
	Signal modeling	0.09
	Background modeling	0.08
	Total	0.22
		I

Summary & Results

- Fit DNN shape in the signal regions
- Fit W+jets subcategories normalizations in W+jets control regions
- Fit only normalization in top-quark control regions
- Results:
 - SM EW signal strength:

 $\mu_{EW} = \sigma^{obs} / \sigma^{SM} = 0.85^{+0.24}_{-0.20} = 0.85^{0.21}_{-0.17} (syst)^{+0.12}_{-0.12} (stat)$ Signal significance of 4.4 σ (5.1 σ expected)

- Observed fiducial cross-section ($m_{qq} > 100~GeV$, $p_t^q > 10~GeV$) of 1.9 ± 0.5 pb
- Considering EW and QCD WV production as signal, the signal strength: $\mu_{EW} = \sigma^{obs} / \sigma^{SM} = 0.98^{+0.20}_{-0.17} = 0.98^{0.19}_{-0.16} (syst)^{+0.07}_{-0.07} (stat)$
 - Measured cross-section: $16.6^{+3.4}_{-2.9}$ pb
- Simultaneous 2D fit of the EW and QCD WV signal strengths

Introduction: VBS

