

Looking for new physics with high mass diboson searches

CLHCP workshop

26th November 2021

Antonio Giannini University of Science and Technology of China

Outline

Looking for new physics with high mass diboson

searches

- Introduction to VV searches
- Full Run-2 139 fb⁻¹ data results
- Fully hadronic final states: [JHEP09(2019)091]
 - Boson-jet tagger
- Semi-leptonic final states: [Eur. Phys. J. C 80 (2020) 1165
 - VBF event topology identification (Machine Learning)
- Conclusions and perspectives

Introduction to diboson

- Diboson signatures open testing scenario of new physics decaying into SM sector
- Several BSM scenarios foresee new massive particles in

ATL-PHYS-PUB-2021-005

BSM models: heavy VV resonances

- Benchmark BSM models
 - Spin-0: RS Radions
 - Spin-1: Heavy Vector Triplet (HVT)
 - Spin-2: RS Gravitons
- Different production mechanisms are considered, ggF/DY/VBF
- Vector bosons from intermediate resonances are longitudinally state dominated

Model			Spin	m = 8	800 GeV	$m = 3 \mathrm{TeV}$				
			Spin	σ [pb]	${\mathcal B}$	Γ/m	σ [fb]	${\mathcal B}$	Γ/m	
RS radion $(k\pi r_c = 35, R \rightarrow WW)$			0	0.54 (ggF)	0.43	2.6×10^{-3}	1.38 (ggF)	0.44	0.032	
$\Lambda_R = 3 \text{ TeV}$ R		$R \rightarrow ZZ$	0	$1.1 \times 10^{-3} (VBF)$	0.21	2.0 × 10	5.5×10^{-3} (VBF)	0.22	0.032	
	Model A	$W' \to WZ$		53	0.024	0.026	79	0.020	0.025	
		$Z' \to WW$		26	0.023	0.020	36	0.020	0.025	
нут	Model B	$W' \rightarrow WZ$	1	1.6	0.43	0.040	5.5	0.47	0.031	
11 V 1	Widdel D	$Z' \to WW$	1	0.86	0.41	0.040	2.5	0.47	0.051	
	Model C	$W' \to WZ$		4.0×10^{-3}	0.50	3.5×10^{-3}	1.6×10^{-3}	0.50	3.3×10^{-3}	
	(VBF)	$Z' \to WW$		2.7×10^{-3}	0.49	5.5 × 10	1.0×10^{-3}	0.50	5.5 × 10	
Bulk RS G _{KK}		$G_{\rm KK} \rightarrow WW$	2	1.9 (ggF)	0.28	0.027 0.47 (ggF)		0.20	0.062	
$(k/\overline{M}_{\rm Pl} = 1.0)$		$G_{\rm KK} \rightarrow ZZ$	2	0.050 (VBF)	0.14	0.037	$1.6 \times 10^{-2} \text{ (VBF)}$	0.10	0.002	

HDBS-2018-10

- Set of signal regions, SRs, to optimise the signal sensitivity
- Set of control regions, CRs, to constrain the SM bkg:
 - high purity regions to constraint the MC
 - data-driven techniques
- Unblind your SRs, what do you observe?

Díboson signatures sensitivity

CLHCP workshop

Bulk RS

 Exp

1.9

1.7

2.2

Obs

1.7

1.5

2.3

HVT model B

Exp

3.5

3.9

_

3.9

3.1

2.8

3.4

4.4

Obs

3.6

3.9

_

4.0

2.8

2.8

3.0

_

4.5

Boson jets and taggers

m, [GeV] **ATLAS** Simulation 160 √s = 13 TeV We look for BSM hints in the diboson events --- Z tagger 140 W tagge 120 the SM VV events are hidden in the mass large amount of the QCD bkg 60 · 400.5 We need powerful **boson-jet tagger** to select Generated jet p [TeV] Jet D our signal topology ATLAS Simulation ATLAS Simulation Jet vs = 13 TeV vs = 13 TeV **D2** nTracks Z tagger --- Z tagger di-jets topology, TCC large-R=1. jets W tagge W tagge 28 3-variables based tagger 26 WP optimised using significance 0.50.5 3.5 Generated jet p_ [TeV] Generated jet p_ [TeV] signal efficiency bkg rejection W-tagging efficiency 1.4 ATLAS Simulation lass efficiency cut ATLAS Simulation W tagger D2 efficiency cut √s=13 TeV Pythia QCD Multijet √s=13 TeV nTrk efficiency cut 1.2 Total efficiency Very high bkg rejection is able to reduce the 0.8 high amount of QCD bkg 400 signal efficiency 300 mostly flat in 200E the observed 0.2 100E data range 0 2.5 3 3.5 2.5 3.5 1.5 0.5 1.5 2 3 Jet p_ [TeV] Jet p_ [TeV]

Fully-hadronic strategy

- Very simple analysis:
 - di-jets requirements: <u>AY<1.2</u> (reduce tchannel QCD) <u>p_T-asymmetry<0.15</u> (to reduce mis-reconstructed events)
 - di-tagging: boson tagger x 2
- Fully data-driven bkg estimation:
 - modelling of the fit shape tested in CRs
 - bkg uncertainty driven by the *fit uncertainty*
 - tagger uncertainty in dedicated V+jets CR

VV fully-hadronic results

- No significant deviation observed
 - interpretation of the observed data in terms of BSM models
- Very competitive results in the high mass regime
 - we can not say anything below 1.3 TeV

Model	Signal Region	Excluded mass range [TeV]					
	WW	none					
Radion	ZZ	none					
	WW + ZZ	none					
	WW	1.3–2.9					
HVT model A, $g_V = 1$	WZ	1.3–3.4					
	WW + WZ	1.3–3.5					
	WW	1.3–3.1					
HVT model B, $g_V = 3$	WZ	1.3–3.6					
	WW + WZ	1.3-3.8					
	WW	1.3–1.6					
Bulk RS, $k/\overline{M}_{Pl} = 1$	ZZ	none					
	WW + ZZ	1.3–1.8					

Semí-leptonic signatures

- Semi-leptonic channels has *lower BR but cleaner* environment w.r.t. fully-hadronic channel
 - MC-based bkg estimation with quite complex SRs/CRs scheme definition
- Different channels to be combined:
 - 3 leptons channels: II, Iv, vv
 - 2 V-hadronic reconstruction techniques: resolved/ boosted
 - VBF vs ggF/DY production mechanism categorisation

CLHCP workshop

VV semí-leptoníc results

ATLAS

√s=13 TeV, 139 fb⁻¹

ZZ 2-lepton

VBF resolved

/ 20 GeV

Events

10

HDBS-2018-10

Data

tt

Z+jets

W+jets

Diboson

Uncertainty

Single top

40 GeV

Events /

ATLAS

√s=13 TeV, 139 fb⁻¹

ZW 0-lepton

ggF/DY merged HP

Data

tt

Z+jets

Diboson

W+jets

Single top

Uncertainty

- No significant deviation observed
 - new data are interpreted as upper bounds on the cross section of new models
- Different channels let to cover large p.s.:
 - 0/1 lepton channels contributing at high-mass, 2 lepton at low-mass
 - VBF regions covered, still need to be improved to get exclusions

Conclusions & perspectives

PUB-2021-018

13

*small-radius (large-radius) jets are used in resolved (boosted) events [†]with $\ell = \mu$, e

High-mass VV resonance searches during Run-2

• Different channels very competitive

Fully-hadronic channel:

Iarge-R(=1.) jets and very powerful boson tagger technique are the keys to exploit high mass range

Semi-leptonic channel:

- new ML techniques already exploited for VBF categorisation events (VBF-RNN)
- Several models and mass ranges excluded

Both channels are re-analysing Run-2 for improved results and preparation for Run-3:

- fully-hadronic: new jets reconstruction and ML tagging techniques
- semi-leptonic: extension of ML approaches

PUB-2021-018

backup

LCTopo VS TCC

16

Event Selection

Signal region	Veto events with leptons: No <i>e</i> or μ with $p_T > 25$ GeV and $ \eta < 2.5$ Event pre-selection: ≥ 2 large- <i>R</i> jets with $ \eta < 2.0$ and mass > 50 GeV $p_{T1} > 500$ GeV and $p_{T2} > 200$ GeV $m_{JJ} > 1.3$ TeV Topology and boson tag: $ \Delta y = y_1 - y_2 < 1.2$ $A = (p_{T1} - p_{T2}) / (p_{T1} + p_{T2}) < 0.15$ Boson tag with D_2 variable, n_{trk} variable, and <i>W</i> or	r Z mass wind	dow							
V+jets control region	Veto events with leptons: No <i>e</i> or μ with $p_T > 25$ GeV and $ \eta < 2.5$ <i>V</i> +jets selection: ≥ 2 large- <i>R</i> jets with $ \eta < 2.0$ $p_{T1} > 600$ GeV and $p_{T2} > 200$ GeV Boson tag with D_2 and n_{trk} variables on either jet Anti-boson tag with D_2 variable on other jet	Events / 5 GeV	- AT - √S= - V+j(LAS 13 TeV,139 ets control r	fb ⁻¹ egion			 ↓ □ ↓ □	Data Fit Fit bkd. V/Z+jets V+jets Z+jets	
		10000 0) - - -) - 60	80 1	Fitted $s_{Tag} =$ 1 00	W/Z+j 0.92 ± 120	et event 0.04 140	•••• ts: 1711 160	2 ± 777 2 ± 777 180 m _J [G	200 ieV]

SRs, fit, uncertainties

Source	m(V') = 1.4 TeV	$m(G_{KK}) = 2.8 \text{ TeV}$
Fit	32%	2.4%
Jet $p_{\rm T}$ scale	29%	1.5%
Total systematic uncertainty	79%	17%
Statistical uncertainty	61%	99%

Event dísplay mJJ = 4.4 TeV

Analysis flow

Event selection

Event coloction	0-lepton	1-lepton	2-lepton					
Event selection	$(ZV \rightarrow \nu \nu V_h)$	$(WV \to \ell \nu V_h)$	$(ZV \to \ell \ell V_h)$					
	No Loose lepton	1 Tight electron	2 Loose leptons					
	$E_{\rm T}^{\rm miss} > 250 {\rm GeV}$	or 1 <i>Medium</i> muon	with $p_{\rm T}^{\ell} > 30 {\rm GeV}$					
V_{ℓ} selection	$p_{\rm T}^{\rm miss} > 50 {\rm GeV}$	with $p_{\rm T}^{\ell} > 30 {\rm GeV}$	from the					
		$E_{\rm T}^{\rm miss} > 60 {\rm GeV}$	$Z \rightarrow \ell \ell$ candidate					
		$p_{\rm T}^{{ m V}_\ell}$ > 75 GeV						
Event veto		No additional Loose lep	tons					
	Veto events wit	h <i>b</i> -jets not associated with	the $Z \rightarrow qq$ candidate					
Event categorisation	≥ 1 large- <i>R</i> jets or ≥ 2 small- <i>R</i> jets							
Event categorisation	VBF and ggF/DY classification according to RNN score							
		$E_{\rm T}^{\rm miss} > 100 {\rm GeV}$						
	$\geq 1 \text{ large-} R \text{ jets}$							
V_h selection (Merged)	The leading jet passing $p_{\rm T}$ -dependent m_J requirement							
		$\mathcal{R}_{p_{\mathrm{T}}/m} > 0.35 (\mathrm{ggF/DY})$	$\mathcal{R}_{p_{\mathrm{T}}/m} > 0.35 (\mathrm{ggF/DY})$					
		$\mathcal{R}_{p_{\mathrm{T}}/m} > 0.25 \; (\mathrm{VBF})$	$\mathcal{R}_{p_{\mathrm{T}}/m} > 0.25 \; (\mathrm{VBF})$					
		Failed merg	ged selection					
		as with $ \eta < 2.5$						
	Not	GeV for $W \to jj$						
V_h selection (Resolved)	Performed	$70 < m_{jj} < 105$	GeV for $Z \rightarrow jj$					
		$\mathcal{R}_{p_{\mathrm{T}}/m} > 0.35 (\mathrm{ggF/DY})$	$\mathcal{R}_{p_{\mathrm{T}}/m} > 0.35 (\mathrm{ggF/DY})$					
		$\mathcal{R}_{p_{\mathrm{T}}/m} > 0.25 \; (\mathrm{VBF})$	$\mathcal{R}_{p_{\rm T}/m} > 0.35 ({\rm VBF})$					

Uncertainties

$m(G_{\rm KK}) = 600 {\rm GeV}$		$m(G_{\rm KK}) = 2 { m TeV}$	
Uncertainty source	$\Delta\mu/\mu$ [%]	Uncertainty source	$\Delta\mu/\mu$ [%]
Total	50	Total	59
Statistical	29	Statistical	48
Systematic	41	Systematic	34
Large-R jet	18	Large-R jet	24
MC statistics	16	MC statistics	17
Background normalisations	15	W/Z+jets modelling	15
Diboson modelling	12	Flavour tagging	5.5
W/Z+jets modelling	11	$t\bar{t}$ modelling	4.2
Small- <i>R</i> jet	9.7	Diboson modelling	3.9
<i>tī</i> modelling	8.1	Single-t modelling	3.3

Some yields...

Channel	$V \rightarrow qq$	Signal								Backgrou	nd estima	ites							
	recon. regions		W+je	ts	Z	+jets	3		tī		Dil	boso	on	Si	ngle	-t	Multijet	Total	L
				VBF category															
	Merged	HP LP	169 ± 370 ±	12 23	228 411	± ±	16 20	102 75	± ±	10 8	51 30	± ±	10 4	24 21	± ±	4 4	- -	574 ± 906 ±	25 33
0-lepton (ZZ)) ggF/DY category																		
	Merged	HP Tag Untag LP Untag	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 400 28 900	270 14 300 560 28 600	± ± ±	40 600 50	437 6030 342 5040	± ± ±	31 270 24 220	100 2300 67 1760	± ± ±	10 180 7 150	45 840 43	± ± ±	7 110 7 80	-	$982 \pm$ 31 100 ± 1270 ± 52 400 +	60 800 70
		Ontag	10,500 1	, ,00	20 000	- 1	100	VBI	Fcat	egory	1700	-	150	000	-	00		52 400 1	1500
	Merged	HP LP	530 ± 1380 ±	28 40	8.3 24.5	3 ± 5 ±	0.5	321 228	± ±	22 17	141 150	± ±	27 33	113 83	± ±	21 16	-	$1110 \pm 1870 \pm$	50 60
	Resolved		11 360 ±	190	530	±	10	4060	±	130	590	±	80	1070	±	210	960 ± 110	$18570~\pm$	340
1-lepton (WW)			ggF/DY category																
	Merged	HP LP	24 820 ± 60 270 ±	170 240	463 1095	± ±	5 8	13 890 11 050	± ±	220 160	4910 3950	± ±	250 210	2800 1970	± ±	400 250	-	46 900 ± 78 300 ±	500 400
	Resolved		443 500 ±	1800	12 480	±	40	126 000	±	1500	16 800	±	1200	21 200	±	2800	27200 ± 1400	$647000\pm$	4000
								VBI	Fcat	egory									
	Merged	HP LP	0 0.133 ±	0.011	87 170	± ±	6 8	0.08 0.85	1 ±	0.009 0.07	9.0 9.9	5 ± 9 ±	1.2 1.2	0.4	0 3 ±	0.07	-	97 ± 181 ±	6 8
	Resolved		0.272 ±	0.012	1566	±	29	17.0	±	0.7	72	±	10	0.4	8 ±	0.32	-	1656 ±	31
$2 \log \left(77 \right)$								ggF/D	DY ca	ategory									
2-lepton (ZZ)	Merged	HP Tag Untag LP Tag Untag	0.0135 ± 0.772 ± 0.0135 ± 2.341 ±	0.0043 0.010 0.0043 0.017	85 3300 138 5920	± ± ±	6 40 8 50	0.28 4.27 0.31 10.16	$3 \pm 2 \pm 3 \pm 3 \pm 2 \pm 2 \pm 3 \pm 2 \pm 2 \pm 2 \pm $	0.035 0.08 0.034 0.16	21.1 361 12.8 278	$1 \pm \pm 8 \pm $	2.3 32 1.4 26	0.3 0.5 0.3 2.0	$4 \pm 8 \pm 0 \pm 3 \pm$	0.05 0.11 0.04 0.29		$107 \pm 3670 \pm 152 \pm 6220 \pm $	7 50 8 60
	Resolved	Tag Untag	4.681 ±	0.026	1323 42750	± ±	26 160	110 110.6	± ±	10 1.5	159 1800	± ±	12 100	4.7	± ±	0.8 2.0	-	$1600 \pm 44650 \pm$	30 190

Spín-0/2 regions

VBF spin-2

25

Resonant VV search: semí-leptoníc

- 3 leptons channel going to be combined:
 - ▷ ZV -> vvqq, WV -> lvqq, ZV -> llqq
 - ▶ good compromise between the low BR of the full ↑ leptonic and the more background of the full advance background of the full
- 2 categories based on the production mechanism are studied:
 - VBF vs ggF/DY
- 2 different techniques to reconstruct the V—>qq decay dedicated to lower (*resolved*) and higher (*merged*) mass regions.
- Interpretations
 - Spin-0: Randall Sundrum (RS) Radions
 - Spin-1: HeavyVectorTriplet, W', Z'
 - Spin-2: Randall Sundrum (RS) Gravitons

Resonant VV analysis in a nutshell

- analysis optimisation
- MC modelling

lacksquare

ML approaches

VBF vs ggF topologies

How does the detector see these events?

NN approach: DL & input variables

- High-level approach:
 - build high-level variables starting from the two tag jets
- Low-level approach:
 - use all the jets and the 4momentum components

xN jets

All jets used for lowlevel approach

2 jets tagged for the high-level approach

General deep learning result, arXiv:1402.4735

The VBF-RNN architecture

Look at more info: • RNN Lecture

RNN paper

- Main idea: deal with variable*length input set* (1, 2, 3... N jets).
- Which is the best NN architecture?
 - RNN seem to fit for our problem!
- An input set (the 4 variables of the 4-momentum) is repeated at different "Time-steps" that could be variables (our number of jets).
- 4 variables used (p_T , η , ϕ , E).

RNN approach: performances

RNN: masses, spíns, leptons channel, data...

