

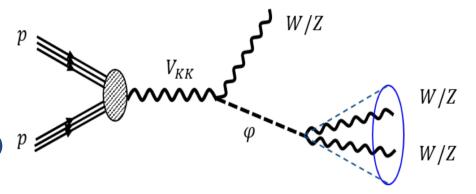
Search for resonances decaying to three W bosons with CMS

Xudong Lyu (Peking University)

On behalf of the CMS Collaboration

November 25-28, 2021

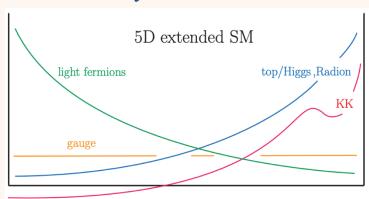
The 7th China LHC Physics Workshop

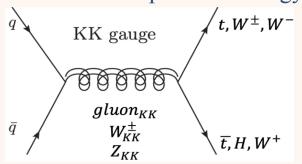


Outline

- 1. Motivation
- 2. Signal Region selection
- 3. Deep-taggers calibration
- 4. Prediction method
- 5. Systematic uncertainty (backup) p
- 6. Results

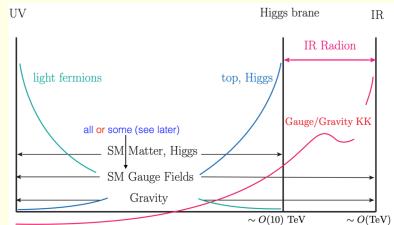
CMS-PAS-B2G-20-001


Motivation for "tri-object" search

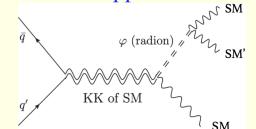

- M_{Pl}-EW scale gap motivates BSM physics (hierarchy problem)
- No BSM physics yet → time to look at non-standard final states/scenarios

Standard (Minimal) Warped ED model

- 2 Branes in Bulk (in the RS framework)
- Everything propagates to the same bulk
- Constrained by LHC searches



• "di-SM" dominant phenomenology

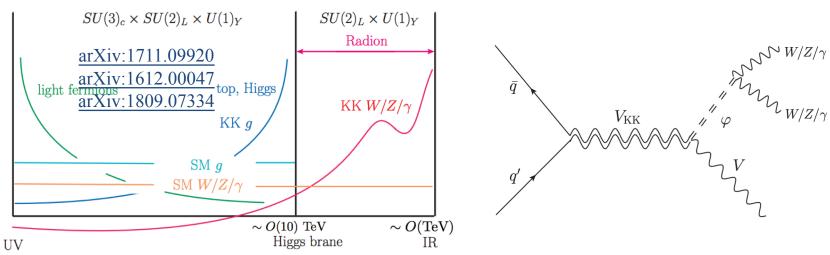


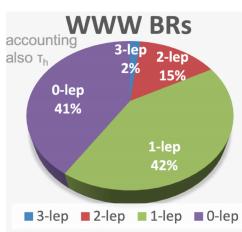
Extended Warped ED model:

- Extra brane by splitting→ Extended Bulk 3 branes
- Various fields propagate in diff. regions

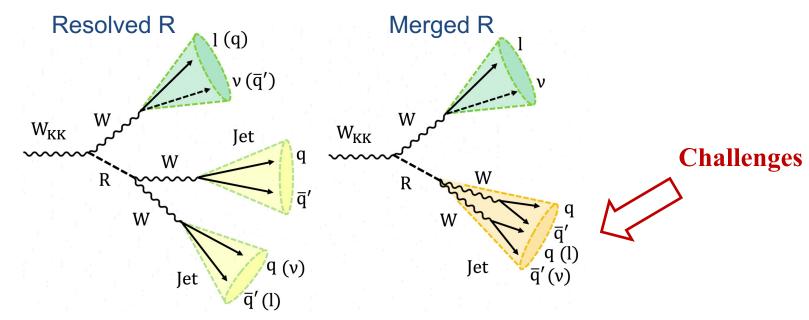
- A wealth of new signatures emerges
- "di-SM" suppressed in favor of "tri-SM"

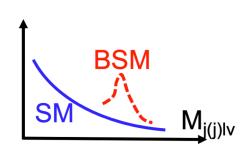
arXiv:1711.09920 arXiv:1612.00047


arXiv:1809.07334


Motivation for "tri-object" search

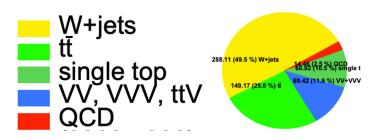
• Only EW in extended bulk \rightarrow dominant: $V_{KK} \rightarrow R V \rightarrow VVV$


- Hierarchy of Radion BR_R: WW > ZZ > $Z\gamma$ > $\gamma\gamma$
- $W_{KK} \rightarrow RW \rightarrow WWW$
- Doubly resonant signal: spin-1 V_{KK} spin-0 radion R
- 1- and 0-lep. largest BRs ~40%
- 1-lep channel is investigated for the first time.



Signal Profile (1-lep)

- Physics objects reconstruction
 - \triangleright hadronic W bosons: jets (Probe **Resolved** in N_j=2, and **Merged** N_j=1 selections)
 - ➤ leptonic W boson: use info. of lep and MET, assume M_W=80 GeV
- Define selections to improve significance
- Background estimation
- Search of a peak over the reconstructed: M_{jlv} , M_{jjlv}



Samples, Datasets, Triggers & Objects

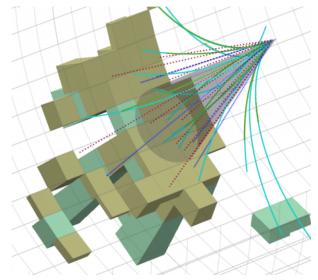
SM BKG MC processes:

Signal Samples dataset: MG LO

• $W_{KK} \rightarrow WWW \rightarrow lv + jets$

DATA: Full Run2, Lumi: 138 fb⁻¹

HL-Triggers:


- μ: Single Muon OR MET
- e: Single_Electron OR Photon

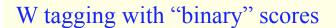
1 Isolated (tight) **lepton** (μ or e)

• Veto additional loose leptons

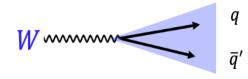
Jets (Tight ID), anti-k_T clustering

- $R_0=0.8 \rightarrow AK8$ "fat" jets $\rightarrow W$, R tagging
- $R_0=0.4 \rightarrow AK4$ "narrow" jets \rightarrow b tagging

- Pileup mitigation with PUPPI
- Use the groomed jet mass soft-drop m_i
- Jet cleaning: if an AK4 jet is within ΔR <0.4 of any selected lep, or ΔR <1 for AK8 jets, the jet is not used in the analysis


26/11/21 5

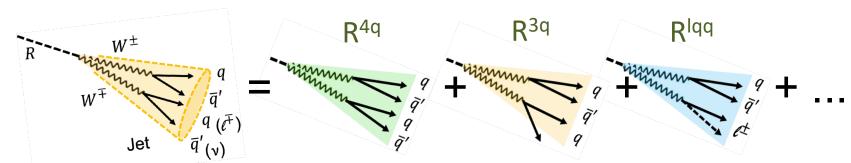
Jet tagging with deepAK8 framework



According to the signal topology, we use two taggers:

$$deep-W = \frac{W_{qq,qc}}{QCD_{g,q,b,..} + W_{qq,qc}}$$

M_i: 60-100 GeV

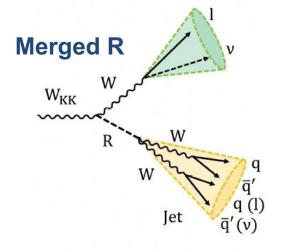


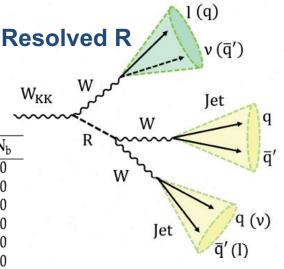
Radion tagging with hybrid:

$$deep-WH = \underbrace{\frac{W_{qq,qc} + H_{4q}}{QCD_{g,q,b,...} + W_{qq,qc} + H_{4q}}}$$

 M_i : > 100 GeV

Selection (1-lep)

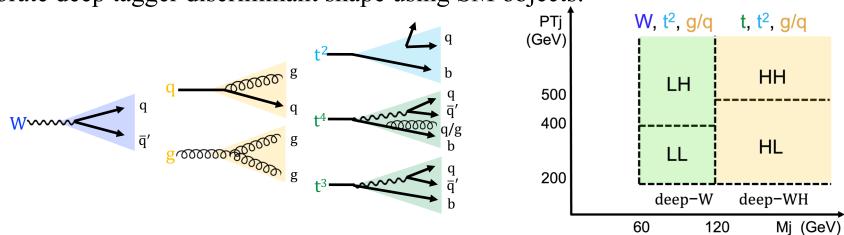

- 1-lepton channel with BR of 42%: $W_{KK} \rightarrow WWW \rightarrow l + v + jets$
- Split to 6 signal regions based on:
- ➤ Merged: (SR1-3)
 - o single massive large-radius jet
 - o Bin over M_R : 60-100, 100-200, >200 GeV
 - \circ For $60 < M_i < 100$ GeV, use deep-W
 - \circ For Mj > 100 GeV, use deep-WH to tag radion
- Resolved: (SR4-6)
 - o 2 jets, ordered due to mass

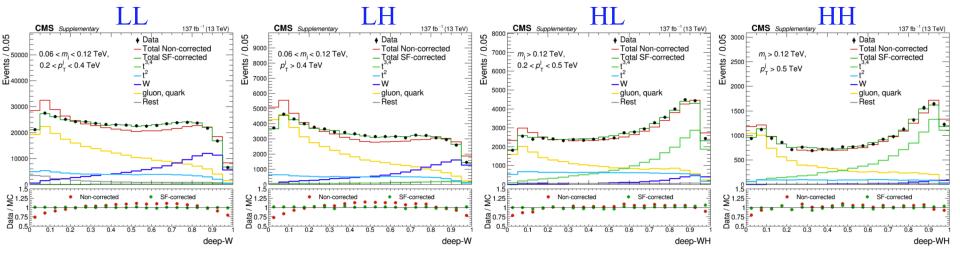

M₁^{max}: 60-100 GeV

M_j^{min}:0-60-100 GeV binning

 \circ For $60 < M_i < 100$ GeV, use deep-W

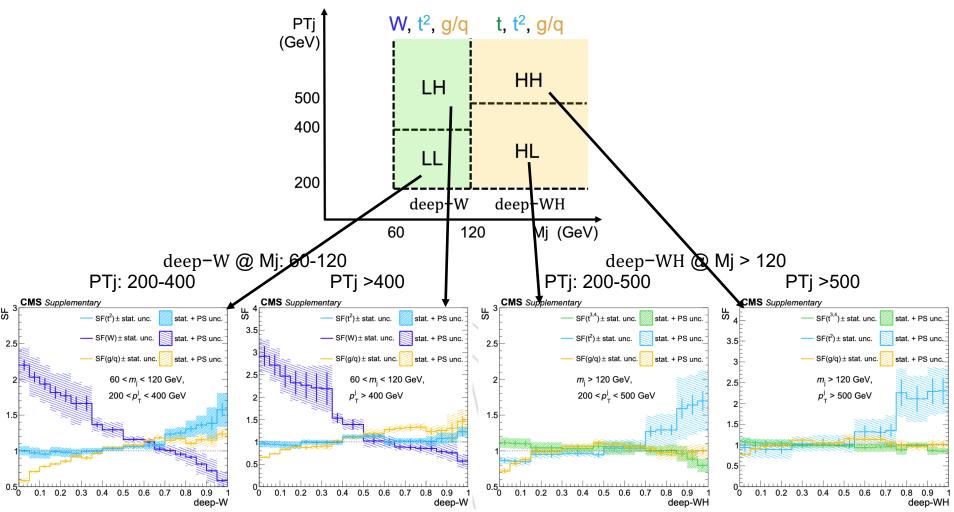
Region	$m_{\rm j}^{\rm max}$ [GeV]	taggers	$m_{\rm j}^{\rm min}$ [GeV]	tagger	$N_{\rm j}^{\rm AK8}$	$N_{\rm j}^{ m AK4}$	N_b
SR1	60–100	deep-W > 0.7	_	_	1	≤ 2	0
SR2	100–200	deep-WH > 0.7	_	_	1	≤ 2	0
SR3	≥ 200	deep-WH > 0.7	_	_	1	≤ 2	0
SR4	60–100	deep-W > 0.5	60–100	deep-W > 0.5	2	≤ 2	0
SR5	60–100	deep-W > (<) 0.5	60–100	deep-W <(>) 0.5	2	≤ 2	0
SR6	60–100	deep-W > 0.7	0–60		2	≤ 2	0
_	•				-		




DeepAK8 tagger calibration

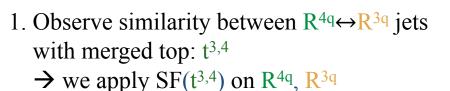
Calibrate deep tagger discriminant shape using SM objects:

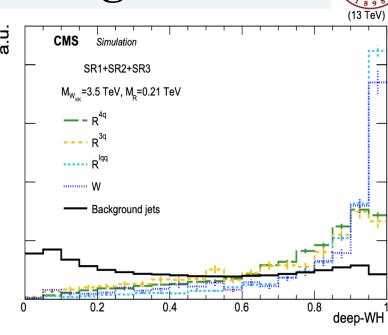
Apply parton-level matching and break down into 4 samples (LL, LH, HL, HH)

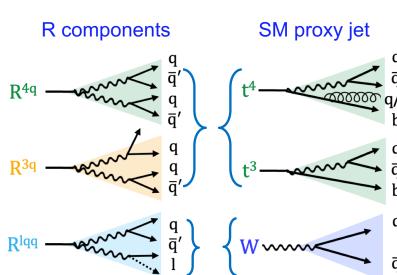

• Split each sample into 3 pure subsets and correct MC shapes bin by bin to derive scale factors for each SM object (details in backup)

DeepAK8 tagger calibration

All SFs derived for all 4 bins (2 Mj, 2 pTj bins) and for all types of jets W, t², t^{3,4}, g/q

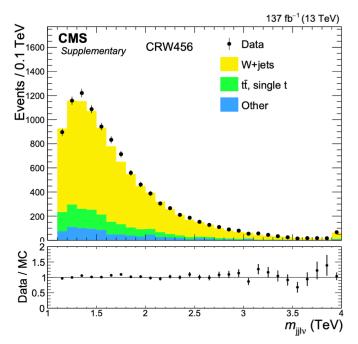

A large set of validation tests showed **good post SFs-correction performance**We **use these SFs to correct all jets** for both signal and BKG


Calibration for signal



- Merged Radion jet $\approx R^{4q} + R^{3q} + R^{1qq}$
- no standard candle in SM
 - special calibration treatment

- 2. Observe similarity between $W \leftrightarrow R^{lqq}$ jets \rightarrow we apply scale factors for W, SF(W), on R^{lqq}
- 3. The difference between the performances of the SM candle and signal is taken into account as the systematic uncertainty.


Control region for W+jets

• Use SR-selection

- → Maintain kinematics as in SR
- Invert deep-W(WH) tagger cuts \rightarrow Signal free samples with large statistics
- Reject tops: deep-t<0.4
- → Enhance W+jets purity (rejecting top)

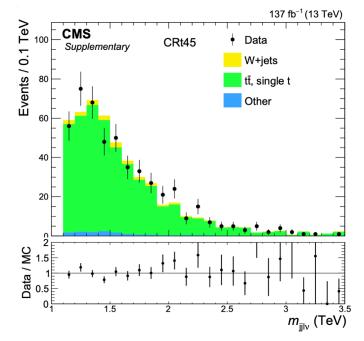
Region	m _j ^{max} [GeV]	taggers	m _j ^{min} [GeV]	tagger	N _j AK8	N _j AK4	N_b
CRW1	60–100	deep-W(t) $< 0.7(0.4)$	_	_	1	≤ 2	0
CRW2	100–200	deep-WH(t)< 0.7(0.4)	_	_	1	≤ 2	0
CRW3	≥ 200	deep-WH(t)< 0.7(0.4)	_	_	1	≤ 2	0
CRW456	60–100	deep-W(t) $< 0.5/0.7(0.4)$	60–100/0–60	deep-W < 0.5/	2	≤ 2	0

- SRMC, CRMC, CRDATA-Rest have consistent $M_{j(j)lv}$ shapes
- Use the CR to deliver rate $(N_{CR_i}^W)$ and shape (TF_i^W) correction to SR as:

$$PRED_{SR_{i}}^{W} = N_{CR_{i}}^{W} MC_{SR_{i}}^{W} \frac{[DATA-rest]_{CRW_{i}}}{N_{CR_{i}}^{W} MC_{CRt_{i}}^{W}} = N_{CR_{i}}^{W} MC_{SR_{i}}^{W} TF_{i}^{W}$$

$$0.96 \text{ to } 1.03$$

We have 4 such CRWs (in accordance with SR1-6); we illustrate only the CRW456 here.


CR for top

- Use SR-selection
- Invert b-veto to $N_b \ge 1$

- → Maintain kinematics as in SR
- → Get signal-free, top-pure sample
- Remove tagger cuts: $deep-W(WH)>0 \rightarrow Enhance statistics$

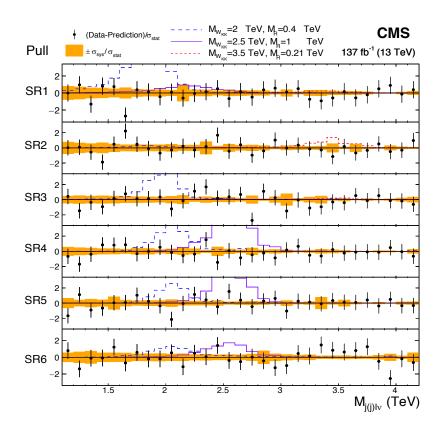
Region	m _j ^{max} [GeV]	taggers	m _j ^{min} [GeV]	tagger	N _j AK8	N_i^{AK4}	N_b
CRt1	60–100	deep-W > 0	_	_	1	≤ 4	≥ 1
CRt2	100–200	deep-WH > 0	_	1 – 1	1	≤ 4	≥ 1
CRt3	≥ 200	deep-WH > 0	_	-	1	≤ 4	≥ 1
CRt45	60–100	deep-W>0	60–100	deep-W > 0	2	≤ 4	≥ 1
CRt6	60–100	deep-W > 0	0-60		2	≤ 4	≥ 1

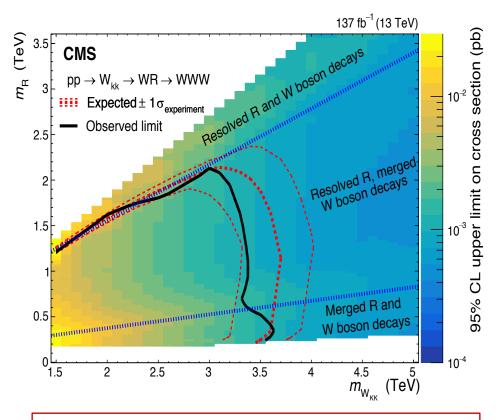
We have 5 such CRts (in accordance with SR1-6); we illustrate only the CR45 here.

- SRMC, CRMC, CRDATA-Rest have consistent $M_{j(j)lv}$ shapes
- Use the CR to deliver rate $(N_{CR_i}^t)$ and shape (TF_i^t) correction to SR as:

$$PRED_{SR_{i}}^{top} = N_{CR_{i}}^{t} MC_{SR_{i}}^{top} \frac{[DATA-rest]_{CRt_{i}}}{N_{CR_{i}}^{t} MC_{CRt_{i}}^{t}} = N_{CR_{i}}^{t} MC_{SR_{i}}^{t} TF_{i}^{t}$$

$$0.71 \text{ to } 1.03$$

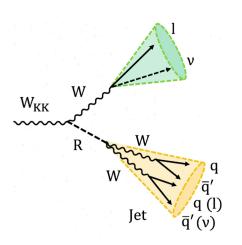

(Where MC is SF-corrected)
We **validate** prediction in low-ST samples


Results and limit

• Combined fit of six signal regions. (No excess over the background estimation is observed.)

• Limits in 2D W_{KK} vs. R mass plane.

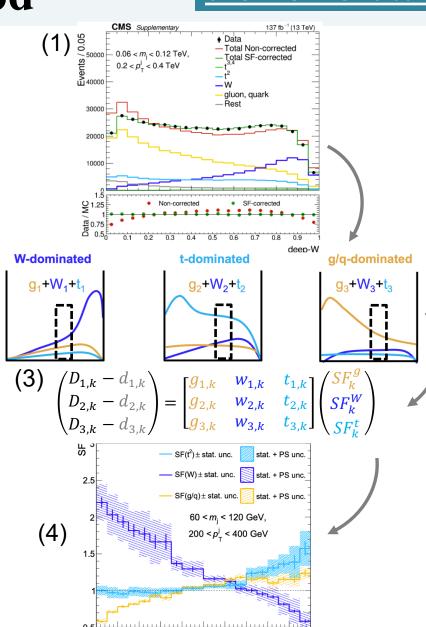
The triboson resonances are excluded up to $m_{WKK} = 3.4 (3.6)$ TeV for $m_R = 1 (0.35)$ TeV.



Summary

CMS-PAS-B2G-20-001

- First search for 3 massive W boson resonances
- Probe very recent (2017-2019) theoretical scenario
- Search features:
 - Simultaneous probe of both merged and resolved
 - Featuring discovery potential
 - Extensive use of deep-AK8 taggers
 - Novel tagger calibration with "matrix method"
 - Exclusion limits up to ~3.6 TeV


Backup

26/11/21 15

Matrix method

CMS-PAS-B2G-20-001

- 1. Focus at LL sample with W, t², g/q (left plot of last slides)
- Split the samples into 3 pure subsets
 (applying cuts on τ_{ij}, deep-x/y, N_b, m_j)
 in a way where each subset is
 dominated by a single type of jets
 → mismodeling revealed
- 3. Demand: **Data** = **scaled sum of yields** $D_{i,k} = (g_{i,k})SF_k^g + (w_{i,k})SF_k^W + (t_{i,k})SF_k^t + d_{i,k}$ Define system of 3 equations,
 1 per each subset "i", and per tagger score bin "k"
- 4. Solve a 3x3 system for SFs per each tagger score bin and get SFs→
 - Known yields: D, W, t, g/q, d
 - Unknown SFs

Matching criteria

q/g	W o qq	t^2	t ^{3,4}	$R^{3,4q}$	$R^{\ell qq}$
(W,j) < 0.6	(W,j) < 0.6	(t,j) < 0.6	(t,j) < 0.6	(R,j) < 0.6	(R,j) < 0.6
_	$(q_{1W},j)<0.8$	$(b_t,j)<0.8$	$(b_t, j) < 0.8$	$(q_1, j) < 0.8$	$(q_1, j) < 0.8$
_	$(q_{2W},j)<0.8$	$(q_{1W},j)<0.8$	$(q_{1W},j)<0.8$	$(q_2,j)<0.8$	$(q_2, j) < 0.8$
_	$(b_t, j) > 0.8$	$(q_{2W},j)>0.8$	$(q_{2W},j)<0.8$	$(q_3,j)<0.8$	$(\ell, j) < 0.8$
			For t^4 vs. t^3 :	For R^{4q} vs. R^{3q} :	
	_	_	(q/g,j)<0.8	$(q_4, j) < 0.8$	
$q \xrightarrow{q} q$	$\bigvee^{q}_{\bar{q}'}$	t^2 b	t^4 q q' q/g q	$R^{4q} \xrightarrow{\qquad \qquad \qquad q \\ \overline{q}' \\ q \\ \overline{q}' \\ \end{cases}$	R^{lqq} q q' l
g 000000000000000000000000000000000000			t^3 q q' b	R^{3q} q q q q'	

17

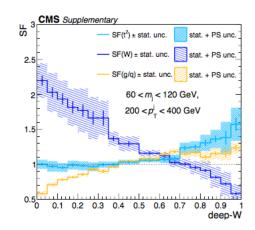
Systematic uncertainty for BKGs

- Attribute **nuisances** to each unc. source, in principle **uncorrelated** between SRs
- **Data-driven pred.** corrects for: Pu, JES/R, Lumi, Trigger, PDFs, $\mu_{R,F}$, lep. eff, reco, ID

Rate unc. from CRs

	SR1	SR2	SR3	SR4	SR5	SR6
Wjets	21%	18%	31%	5%		
top	10%	16%	29%	5%		14%
rest	50%					

Shape unc.


 $\pm 1\sigma$ M_{j(j)lv} templates from CRs fit bands.

Unc. on SFs

1. Parton Shower (PS) ~10-20% Extract SFs with 3 alternative tt samples (powheg+pythia8, powheg+herwig7, MG+pythia8)

maximum difference is used as unc.

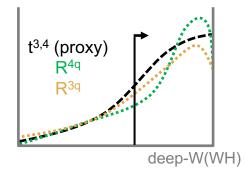
- 2. Bias due to Matrix method cuts 10%
 - Different per M_j , pT_j bin, jet-type
 - Translate SFs' unc. → to SR yields:
 - Typical magnitude ~15-20%

REGION	component proportion	Event yields: SF-corrected	$SF_{eff}\pm ext{bias}\pm ext{PS}$ [% Total	 h
REGION	W 18%	20.3 [23.4]	$0.87 \pm 0.09 \pm 0.11$ [16%]	
	t^{2} 6%	8.8 [8.0]	$1.10 \pm 1.10 \pm 0.05$ 100%	
SR4	$t^3, t^4 = 1\%$	1.8 [1.9]	$0.97 \pm 0.10 \pm 0.09$ [14%]	
	g/q 71%	114.6 [94.9]	$1.21 \pm 0.12 \pm 0.08$ [12%]	
	Rest 4%	5.4 [5.4]	1.00	
	Inclusive	150.8 [133.5]	$1.13 \pm 0.17 \pm 0.08$ [16%]	

Systematic uncertainty for signal

Apart from Pu, JES/R, Lumi, Trigger, PDFs, $\mu_{R,F}$, lep. eff, reco, ID

Unc. on SFs


1. Parton Shower $\sim 10-20\%$

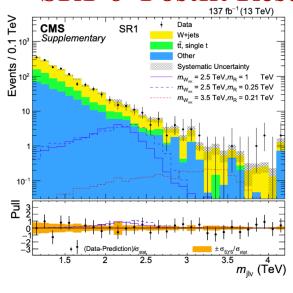
Extract SFs with 3 alternative tt samples (powheg+p8, powheg+herwig7, MG+p8), maximum difference is used as unc.

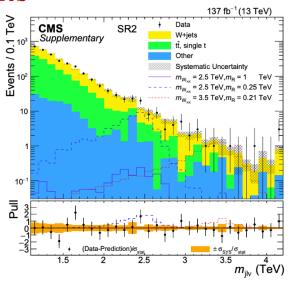
- 2. Bias 10% (due to Matrix method selection cuts)
- 3. Proxy-unc.

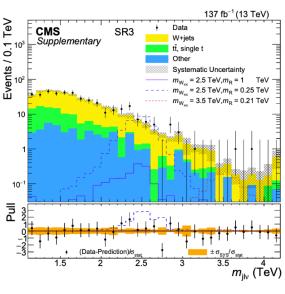
Accounts for differences between $R^{4q/3q}$, R^{1qq} and SM proxy jets: $t^{3,4}$, W. Compare normalized deep-W(WH) spectra to **evaluate % diff.** above the cut with

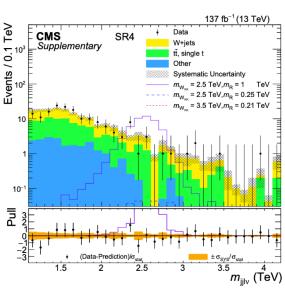
metric:

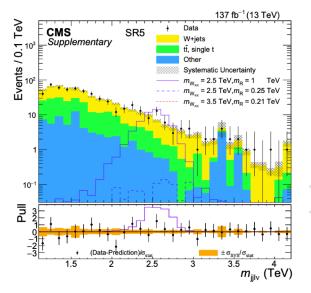
Proxy unc.=
$$\sqrt{(\frac{\sum_{i}|t_{i}^{3}-t_{i}^{4}|}{\sum_{i}t_{i}^{4}})^{2}+(\frac{\sum_{i}|R_{i}^{3q|4q}-t_{i}^{3A}|}{\sum_{i}t_{i}^{3A}})^{2}} \propto \frac{1}{\sqrt{(\frac{\sum_{i}|t_{i}^{3}-t_{i}^{4}|}{\sum_{i}t_{i}^{4}})^{2}}}$$

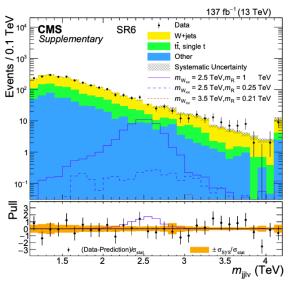

4. High-pT extrapolation

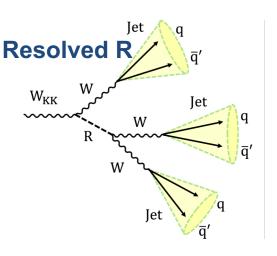

Signal jets much more boosted wrt SM. Generate herwig++ signal, use % diff. wrt pythia8 as unc.

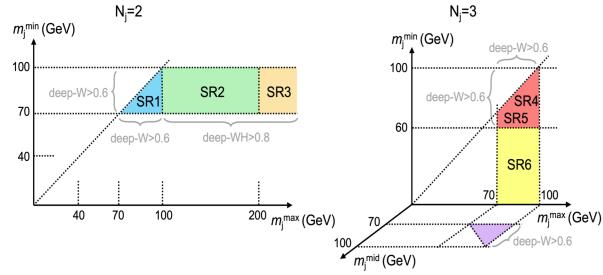


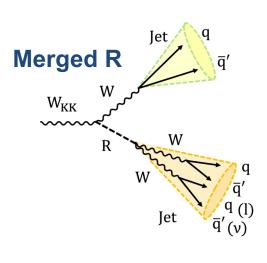

$W_{KK} \rightarrow WR \rightarrow WWW \rightarrow lv + jets$ CMS-PAS-B2G-20-001

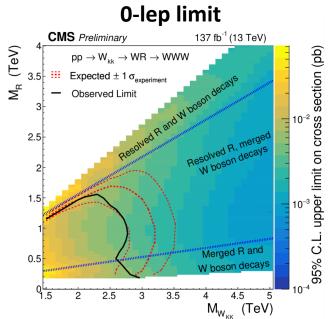

SR1-6 Postfit Results

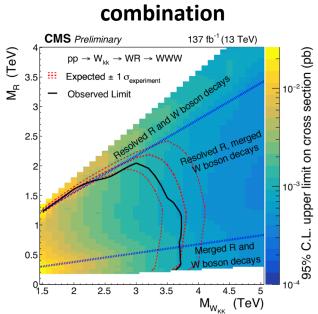











$W_{KK} \rightarrow WR \rightarrow WWW \rightarrow jets$

