

Search for dark photon in four-lepton events via rare Z decay with the ATLAS detector

Mingyi Liu¹ | CLHCP2021

1. University of Science and Technology of China

Introduction

Motivation:

- ✓ Important candidate for the dark sector
- ✓ Hidden sector couplings and mass generation mechanisms

Gauge boson A' from $U(1)_{D}$ couples to Z by kinetic mixing *ɛ*

Whose mass generated from Dark Higgs h_D

$$\mathcal{L}_{int} \subset -\frac{1}{4}\widehat{B}_{\mu\nu}\widehat{B}^{\mu\nu} - \frac{1}{4}\widehat{Z}_{D\mu\nu}\widehat{Z}_{D}^{\mu\nu} + \frac{1}{2}\frac{\varepsilon}{\cos\theta_{W}}\widehat{Z}_{D\mu\nu}\widehat{B}^{\mu\nu} + \frac{1}{2}\frac{m_{D,0}^{2}}{2}\widehat{Z}_{D\mu}^{\mu}\widehat{Z}_{D\mu\nu}$$

\blacktriangleright New rare Z decay mode: $Z \rightarrow A' h_D$ Assumptions: • Br $(h_D \to A' A') = 100\%$ A' is the lightest BSM particle Br (A' → SM f f̄) = 100% Focusing on the on-shell cases: $M_{A'}$ (10 ~ 40 GeV) < M_{hD} (20 ~ 70 GeV) Decay rate for $Z \rightarrow A' + h_D \propto \alpha_D \varepsilon^2$

Signal: 41 (e/ μ , decayed from on shell A's) + X

Signal Region

SM Backgrounds Prompt backgrounds:

Inclusive $Z/ZZ \rightarrow 41$, Higgs, tri-boson, ttXX

Non-prompt (fake) backgrounds:

- Fake leptons from Z+jets / tt / WZ, poor modeling
- Data driven fake factor method
- \succ Fake enriched (Z+jets) region defined to calculate fake factor
- > Apply fake factors to events with loose leptons

Uncertainties

- Statistical uncertainties
- Experimental systematics ID, Isolation, Pt resolution

gqZZ ggF ttX Zjets

Selections	Description
Trigger	Fire at least one of the unprescaled lepton trigger
$N_{lepton} \ge 4$	At least 4 leptons (e, μ)
From Z	For all OSSF Quadruplets, $m_{4l} < m_Z - 5GeV$
$N_{quad} \ge 1$	Has at least one OSSF Quadruplet
	If has more than one Quadruplet, choose the one with min $ m_{l1l2} - m_{l3l4} $
	Label the pair with larger mass as m_{l1l2} , the other one as m_{l3l4}
ΔR_{ll}	In the selected quadruplet, $\Delta R > 0.1(0.2)$ between SF (OF) leptons
On Shell	$m_{l3l4}/m_{l1l2} > 0.85$
J/ψ veto	In the selected quadruplet, the mass of OSSF pairs must be larger than 5GeV
$\Upsilon(bb)$ veto	The mass of OSSF pairs must be out of the Υ mass range
	$[m_{\Upsilon(1s)} - 0.7, m_{\Upsilon(3s)} + 0.75]$ GeV

Signals ($M_{hD} = 40 \text{ GeV}$) are under $\alpha_D = 0.1$; $\varepsilon = 10^{-3}$

Discriminant

Yields (139fb⁻¹):

- $qqZ/ZZ \sim 36$
- $ggZZ \sim 3$
- Other BKGs << 1
- Signals ~ 7

Promising sensitivity!

Pile up / Luminosity Global trigger efficiency

Theoretical systematics QCD scale $PDF + \alpha_{S}$ Generator tune Parton showering

• • •

. . .