

Probing ZZ diboson polarization with four-lepton events in ATLAS

Xiaotian Liu University of Science and Technology of China

> CLHCP2021 Poster Session 2021.Nov.25

Introduction

Motivation

- Diboson polarization: a good probe for SM test and New Physics search:
 - Longitudinal-longitudinal (LL) version of VBS
 - test Higgs mechanism of EWSB in SM
 - Polarized differential cross-sections
 - constrain EFT operators

• pp→4l differential cross-sections measured as a function of **many observables** with **high precision** in ATLAS

2021/Nov/25

Xiaotian Liu · CLHCP2021 Poster Session

 $\cos \theta_{12}$

Introduction

Motivation

 Kinematic observables behaving differently in ZZ(4I) according to polarization states (TT, TL, LL)

 Trying to measure ZZ polarization based on angular observables, and other observables if possible

Selection and observables

Selection

• **On-shell ZZ region** with loose lepton selection

	Lepton Selection				
Muon	Dressed, $p_{\rm T} > 5$ GeV, $ \eta < 2.7$				
Electron	Dressed, $p_{\rm T} > 7$ GeV, $ \eta < 2.47$				
	Event Selection				
Leptons	At least 4 leptons (e, μ)				
Lepton flavor	At least 2 Same-Flavor Opposite-Sign (SFOS) lepton pairs				
Lepton p_T	$p_{\rm T} > 20/10 {\rm ~GeV}$ for leading two leptons				
Lepton separation	$\Delta R_{ij} > 0.05$ for any two leptons				
J/Ψ veto	$m_{ij} > 5$ GeV for all SFOS pairs				
On-shell ZZ region	$m_{4\ell} > 180 \text{ GeV}$ for the quadruplet				
On-shell Z	$ m_{ij} - m_Z < 10$ GeV for both SFOS pairs in the quadruplet				

• LL component appearing with a fraction of ~6%

Category	X-section (fb)	Total PS yield	Ratio to Sum. (tot.)	FV yield	Ratio to Sum. (fid.)	Cut eff.
TT	24.00118	3335.3285	68.27%	1169.2565	68.62%	35.06%
TL	9.08615	1262.6586	25.84%	436.93006	25.64%	34.60%
$\mathbf{L}\mathbf{L}$	2.070862	287.77773	5.89 %	97.694777	5.73 %	33.95 %
TT+TL+LL	35.158192	4885.7648	100%	1703.8813	100%	34.87%

• kinematic differences suppressed with low LL fraction

2021/Nov/25

Selection and observables

- Observables
 - Observables defined based on different reference frames

- Each of observables compared, the definition being able to enhance LL significance chosen
- Most of the optimized observables defined in ZZ rest frame
- Considering to combine the separation power in all observables

MVA method and LL significance

- MVA method to extract, condense the differences of 3 polarization states and classify them
- Boost Decision Tree (BDT) is used and achieve very nice performance with detailed tuning
- Optimized input observables:

- $p_{T,4\ell}^{\text{LAB}}, y_{4\ell}^{\text{LAB}}, \Delta \phi_{pairs}^{\text{LAB}}, \cos \theta_1^{\text{ZZREST}}, \cos \theta_2^{\text{ZZRSET}}, \cos \theta_{Z1}^{*,\text{ZZREST}},$
- $\Delta R_{\ell 1 \ell 2}^{ZZREST}$, $\Delta R_{\ell 3 \ell 4}^{ZZREST}$, $\Delta \phi_{\ell 1 \ell 2}^{ZZREST}$, $p_{T, Z1}^{ZZREST}$, y_{Z1}^{ZZREST}

MVA method and LL significance

- LL significance fit including only statistical uncertainty
- BDT giving LL significance of 4.52σ with statistic-only fit, while the best result of fit on individual observables yielding 2.95σ
- Polarization of ZZ can be measured with largely improved significance using MVA method

