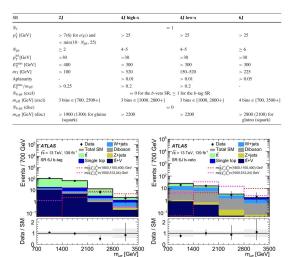

Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at \sqrt{s} =13TeV with the ATLAS detector

This poster presents recent ATLAS results of the search for gluino and squark pair production with one lepton, jets and missing transverse momentum based on 139fb⁻¹ of \sqrt{s} =13TeV proton – proton collision data collected by ATLAS detector.

SUSY signal

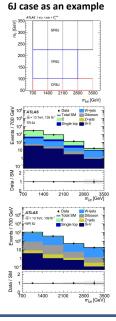


2 types of mass spectra:

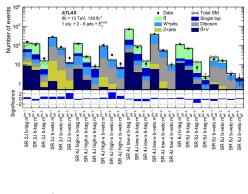
Case1: x =
$$\frac{m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0})}{m(\tilde{g}) - m(\tilde{\chi}_{1}^{0})} = 0.5$$

Case2: m($\tilde{\chi}_{1}^{0}$) = 60 GeV

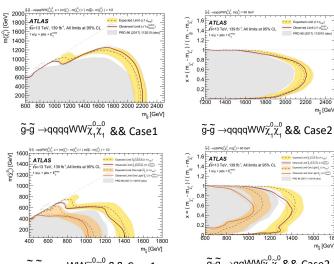
Event selection



Different jet multiplicity SRs are designed to target various signal scenarios.


Background estimation

CR	2J	4J	6J
N _ℓ		= 1	
$p_{\rm T}^{\ell}$ [GeV]	> 7(6) for <i>e</i> (<i>µ</i>) and	> 25	> 25
	$< \min(10 \cdot N_{jet}, 25)$		
Njet	≥ 2	4-5	≥ 6
E ^{miss} _T [GeV]	> 400	> 300	> 250
m_T [GeV]	50-80	5090	50-100
Aplanarity	-	> 0.01	> 0.05
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.25	> 0.2	-
m _{eff} [GeV]	3 bins ∈ [700, 2500+]	3 bins ∈ [1000, 2800+]	4 bins ∈ [700, 3500+]
Nb-jet	\geq 1 for the top CR; = 0 for the W+jets CR		
VR	2J	4J	6J
VR N _l	2J	4J = 1	6J
	2J $> 7(6)$ for $e(\mu)$ and		6J > 25
Nt		= 1	
Nt	$> 7(6)$ for $e(\mu)$ and	= 1	
$\frac{N_{\ell}}{p_{T}^{\ell} [\text{GeV}]}$	> 7(6) for $e(\mu)$ and < min(10 · N _{jet} , 25)	= 1 > 25	> 25
$\frac{N_{\ell}}{p_{T}^{\ell} [GeV]}$ N_{jet}	> 7(6) for $e(\mu)$ and < min(10 · N _{jet} , 25) ≥ 2	= 1 > 25 4-5	> 25 ≥ 6
N_{ℓ} p_{T}^{ℓ} [GeV] N_{jet} E_{T}^{miss} [GeV]	> 7(6) for $e(\mu)$ and < min(10 · N _{jet} , 25) ≥ 2 > 400	= 1 > 25 4-5 > 300	> 25 ≥ 6 > 250
N_{ℓ} p_T^{ℓ} [GeV] N_{jet} E_T^{miss} [GeV] m_T [GeV]	> 7(6) for $e(\mu)$ and < min(10 · N _{jet} , 25) ≥ 2 > 400	= 1 > 25 4-5 > 300 90-150	> 25 ≥ 6 > 250 100-225
N_{ℓ} p_{T}^{ℓ} [GeV] N_{jet} E_{T}^{miss} [GeV] m_{T} [GeV] Aplanarity	> 7(6) for $e(\mu)$ and < min(10 · N _{jet} , 25) ≥ 2 > 400 80-100 -	= 1 > 25 4-5 > 300 90-150 > 0.01	> 25 ≥ 6 > 250 100-225 > 0.05 -


- Dedicated CRs are designed for dominant background (ttbar, singleTop and Wjets). A simultaneous fit with SRs and CRs is
- performed. VRs are designed correspondingly for each Njet case.

Results

No significant excess beyond the Standard Model expectation is found

 $\widetilde{q} \text{-} \widetilde{q} \rightarrow q q W W \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \&\& Case1$

Gluino (Squark) masses up to around 2.2(1.4) TeV are excluded for a mass of $\tilde{\chi}^{\circ}_{\perp}$ lower than 200GeV.

1400 1600

ATLAS

1400 1600

1200

 \tilde{q} - $\tilde{q} \rightarrow qqWW \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \&\& Case2$

2000 2200 2400

m_a [GeV]

1800

m_a [GeV]