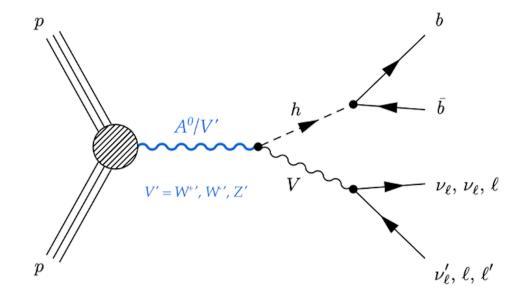


Search for heavy resonance via WH → lvbb with ATLAS

Tong Li (Shandong University), for the analysis team
The 7th China LHC Physics Workshop (CLHCP 2021), 25-28 Nov. 2021

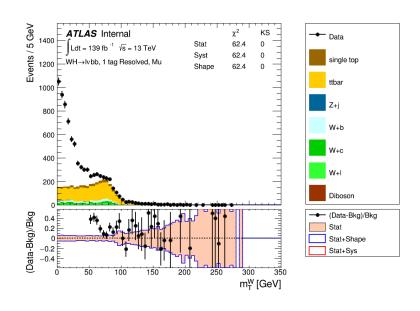

Introduction

Search for heavy resonance decaying into W(Iv)H(bb)

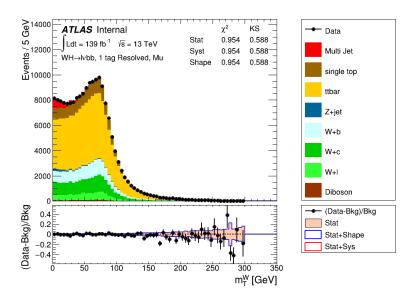
- Predicted by several BSM theories
- \rightarrow H identified with the SM Higgs (m_h=125 GeV)
- \rightarrow H \rightarrow bb for enlarging the statistics
- \rightarrow W \rightarrow IV for triggering and selecting events efficiently
- > ATLAS full Run 2 dataset used

Heavy Vector Triplet (HVT)

- Heavy vector bosons W'
- ➤ Interpret of two benchmark models: Model A / Model B



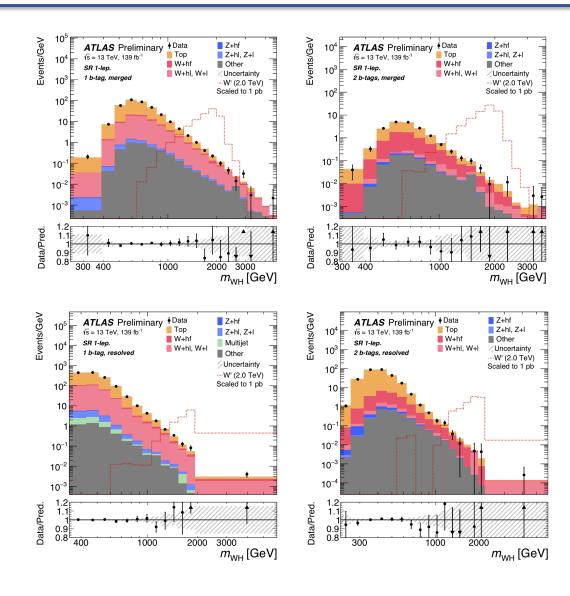
1L CONF Note


Multi-jet (MJ) background estimation

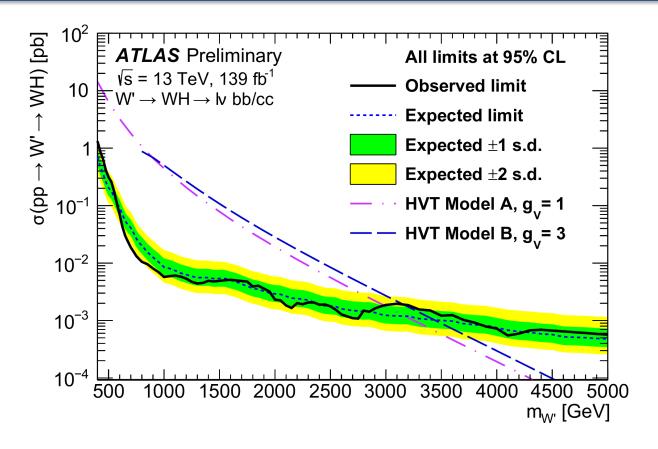
	Criterion	isolated region	non-isolated region
Electron	ID	TightLH	TightLH
	Trk Isolation	ptvarcone20/pT < 0.06	ptvarcone20/pT < 0.06
	Calo Isolation	topoetcone20/pT < 0.06	topoetcone20/pT > 0.06
Muon	ID	TightLH	TightLH
	Trk Isolation	ptvarcone30/pT < 0.06	0.06 < ptvarcone30/pT < 0.15

Definition of isolated and non-isolated region

mTW distributions in MJ CR



Post-fit distributions in SR


Statistical analysis

Region	signal regions	control regions		
Resolved				
<i>b</i> -tags	1, 2 <i>b</i> -tag	1, 2 <i>b</i> -tag		
Mass window	$110 < m_{jj} < 140 \text{ GeV}$	$50 < m_{jj} < 110 \text{ GeV} \mid\mid 140 < m_{jj} < 200 \text{ GeV}$		
Merged				
b-tags	1, 2 <i>b</i> -tag	1, 2 <i>b</i> -tag		
Mass window	$75 < m_J < 145 \text{ GeV}$	$50 < m_J < 75 \text{ GeV} \mid\mid 145 < m_J < 200 \text{ GeV}$		

- > Regions considered in the fit
- > Post-fit distributions in signal regions
- ➤ The signal with mass 2 TeV is shown as a dashed red line

Conclusions

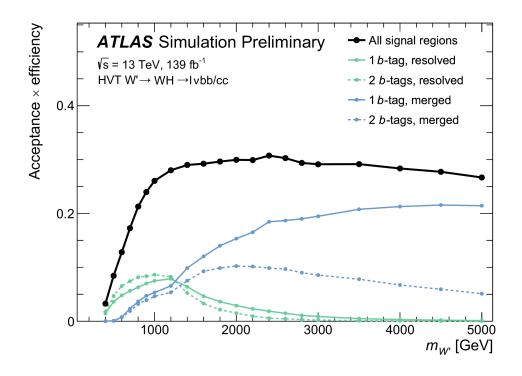
No significant excess observed above SM predictions. Upper limits set on the cross section

- W' masses below 2.95 TeV excluded for HVT Model A and 3.15 TeV excluded for Model B
- The improvements on limits range from ~200% for a resonance mass of 400 GeV to ~350% for a mass of 5 TeV, compared with last publication with partial (36.1/fb) Run2 dataset

Back Up

Data and MC samples

Full Run2 dataset used


Process	Generator	Prediction order of σ_{prod}
$W \to \ell \nu, Z \to \ell \ell, Z \to \nu \nu$	Sherpa 2.2.1	NNLO
$tar{t}$	Powheg + Pythia8	NNLO+NNLL
single top $(s/t/Wt$ -channel)	Powheg + Pythia8	NLO
$t\bar{t}+h$	MG5_AMC@NLO + PYTHIA8	NLO (QCD) and NLO (EW)
$t\bar{t} + V$	MG5_AMC@NLO + Pythia8	NLO
$qg/q\bar{q} \to VV \to \ell\ell/\ell\nu/\nu\nu + q\bar{q}$	Sherpa 2.2.1	NLO
$gg o VV o \ell\ell/\ell\nu/\nu\nu + q\bar{q}$	Sherpa 2.2.2	NLO
$qg/q\bar{q} o \ell\ell\nu\nu$	Sherpa 2.2.2	NLO
$qq \to Wh \to \ell \nu + b\bar{b}$	Powheg + Pythia8	NNLO (QCD) and NLO (EW)
$qq o Zh o \ell\ell/\nu\nu + b\bar{b}$	Powheg + Pythia8	NNLO (QCD) and NLO (EW)
$gg \to Zh \to \ell\ell/\nu\nu + b\bar{b}$	Powheg + Pythia8	NLO+NLL

Event selection

Variable	Resolved	Merged			
Common selection					
Nameh and Sister	$\geq 2 \text{ small-} R \text{ jets } (0, 2\text{-lep.})$	≥1 large- <i>R</i> jet			
Number of jets	2 or $3 R = 0.4 \text{ jets (1-lep.)}$				
Leading jet p_T [GeV]	> 45	> 250			
m_H [GeV]	110-140 (0,1-lep.), 100-145 (2-lep.)	75–145			
	0-lepton selection				
E _T ^{miss} [GeV]	> 150	> 200			
H_T [GeV]	> 150 (120*)	_			
$\Delta\phi_{bb}$	$< 7\pi/9$	_			
$p_{\mathrm{T}}^{\mathrm{mis}}$ [GeV]	> 30 [‡]				
$\Delta\phi(ec{E}_{ m T}^{ m mis},ec{p}_{ m T}^{ m mis})$	<	$\pi/2$			
$\Delta\phi(ec{E}_{ m T}^{ m mis},H)$	$> 2\pi/3$				
$\min \left[\Delta \phi(E_{\rm T}^{\rm miss}, R = 0.4 \rm jet) \right]$	$> \pi/9 \text{ (2 or 3 jets)}, > \pi/6 \text{ (≥ 4 jets)}$				
$N_{ au_{ m had}}$	\mathbf{O}^{**}				
	1-lepton selection				
Leading lepton p _T [GeV]	> 27	> 27			
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	$> 40 (80^{\dagger})$	> 100			
$p_{\mathrm{T},W}$ [GeV]	$> \max \left[150, 710 - (3.3 \times 10^5 \text{ GeV}) / m_{Vh} \right]$	$> \max [150, 394 \cdot \ln(m_{Vh}/(1 \text{ GeV})) - 2350]$			
$m_{\mathrm{T},W}$ [GeV]	<	300			
2-lepton selection					
Leading lepton p_T [GeV]	> 27	> 27			
Sub-leading lepton p_T [GeV]	> 20	> 25			
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} \left[\sqrt{\mathrm{GeV}}\right]$	$< 1.15 + 8 \times 10^{-3} \cdot m_{Vh}/(1 \text{ GeV})$				
$p_{\mathrm{T},\ell\ell}$ [GeV]	$> 20 + 9 \cdot \sqrt{m_{Vh}/(1 \text{ GeV}) - 320^{\dagger\dagger}}$				
$m_{\ell\ell}$ [GeV]	$[\max[40 \text{ GeV}, 87 - 0.030 \cdot m_{Vh}/(1 \text{ GeV})], 97 + 0.013 \cdot m_{Vh}/(1 \text{ GeV})]$				

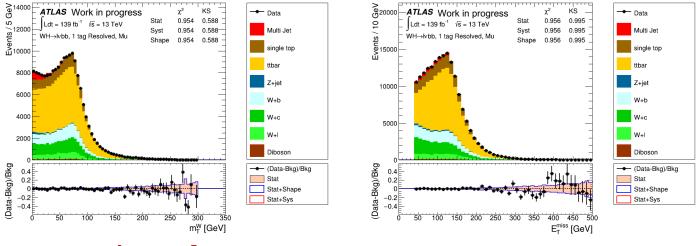
Event selection

For 1- lepton, the final discriminant is the invariant mass of the *VH* system

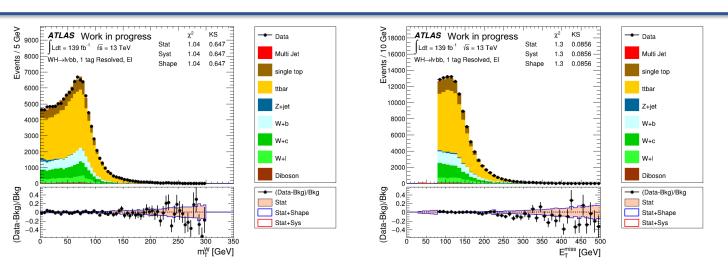
Selection performance of signal in 1L (top) and 2L (bottom) channel

Fit results and post-fit distributions

	Electron	Muon
MJ events	397.03 ± 476.44	3677.48 ± 435.72
MJ fraction	0.35% ± 0.42%	2.11% ± 0.25%

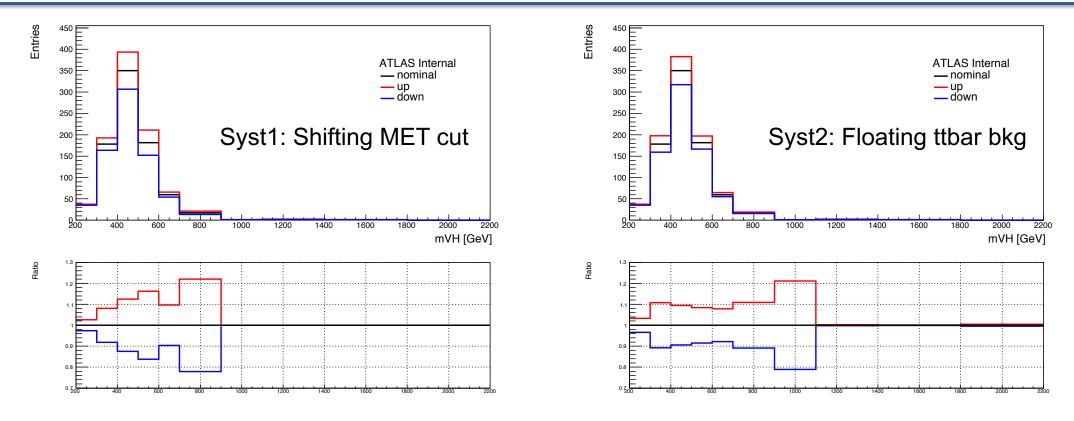

Fit 2 components to data:

- MJ and sum of EW bkg
- both floating


Binning: 40 GeV / bin

Fit range: 0 – 300 GeV

Stable fit has been gotten



Muon channel

Electron channel

Systematic uncertainties in MJ estimation

- > 2 kinds of systematics were derived:
- 1> Shifting MET cut by 25% up and down;
- 2> Floating ttbar background by 10% up and down.