

Search for heavy resonance decaying to *WH* in *lvbb* final state in 139 fb⁻¹ of *pp* collisions at $\sqrt{s} = 13$ TeV with ATLAS

ATLAS-CONF-2021-026

Tong Li (Shandong University) for the analysis team The 7th China LHC Physics Workshop (CLHCP 2021), 25-28 Nov. 2021

1. Introduction

- A search for resonance W decaying into a W boson and a SM Higgs boson in the *lvbb* final state $(l = e \text{ or } \mu)$ is performed, using the full Run 2 dataset collected by ATLAS.
- This analysis is conducted by examining the reconstructed invariant mass distributions of $W' \rightarrow WH$ candidates in the mass range from 400 GeV to 5 TeV.
- \succ $H \rightarrow bb$ for enlarging the statistics. $W \rightarrow lv$ for triggering and selecting signal events efficiently.

Variable

Number of jets

 m_{ii}/m_J [GeV]

 $E_{\rm T}^{\rm miss}$ [GeV]

 $p_{\mathrm{T},W}$ [GeV]

 $m_{\mathrm{T},W}$ [GeV]

Leading jet $p_{\rm T}$ [GeV]

Leading lepton $p_{\rm T}$ [GeV]

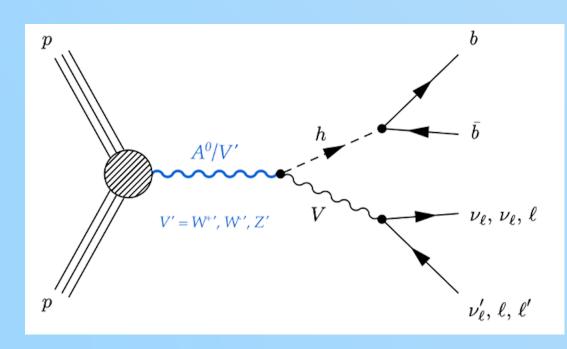
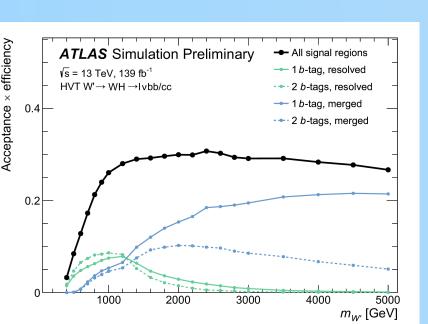


Fig 1: An illustrative diagram


2. Event categorization and selection

Two regimes for event categorization:

- resolved (two small-*R* jets);
- merged (one large-*R* jet), for high Higgs momentum.
 "Priority Resolved signal region (PRSR)" scheme used.

3. Background estimation

> The background processes are estimated by Monte Carlo (MC) simulation except the multi-jet (MJ).

➢ MJ estimation is performed with data-driven method because MC suffered from limited statistics and difficult modeling. This method exploits the isolation of leptons to select a data sample enriched in MJ.

Fig 2: Signal selection efficiencies

				$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \end{array} \\ \begin{array}{c} \end{array}{} \\ \end{array} \\ \begin{array}{c} \end{array}{} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array}{} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
	Criterion	isolated region	non-isolated region	1200 WH→hvbb, 1 tag Resolved, Mu Shape 6 1000 H
Electron	ID	TightLH	TightLH	800
	Trk Isolation	ptvarcone20/pT < 0.06	ptvarcone20/pT < 0.06	600
	Calo Isolation	topoetcone20/pT < 0.06	topoetcone20/pT > 0.06	400
Muon	ID	TightLH	TightLH	200
	Trk Isolation	ptvarcone30/pT < 0.06	0.06 < ptvarcone30/pT < 0.15	

Tab 2: Isolated and non-isolated region

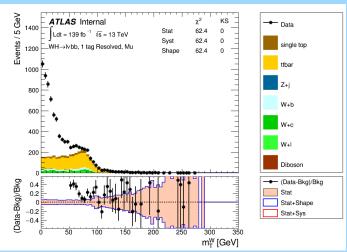
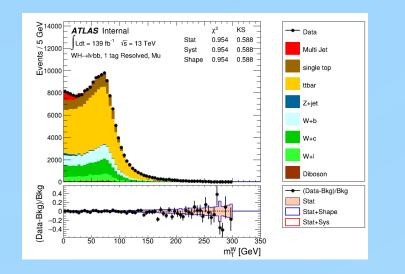



Fig 3: MJ control region

Resolved

 ≥ 2 central small-*R* jets

> 45

110 - 140

> 27

 $> 80 (40^{\dagger})$

 $> \max \left[150, 710 - (3.3 \times 10^5 \text{ GeV})/m_{WH} \right]$

Tab 1: Event selection

Merged

 ≥ 1 large-*R* jet

 ≥ 2 VR track jets (matched to leading large-*R* jet)

> 250

75–145

> 27

> 100

 $| > \max | 150, 394 \cdot \ln(m_{WH}/(1 \text{ GeV})) - 2350 |$

Fig 4: Post-fit distributions, the red histogram indicates the MJ contribution

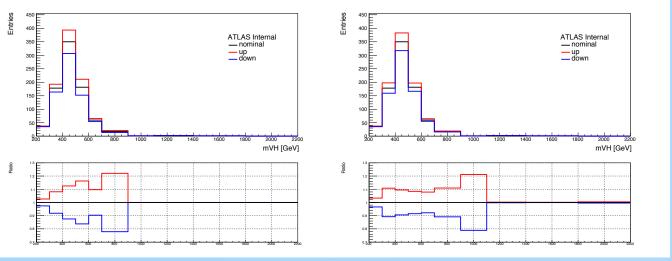
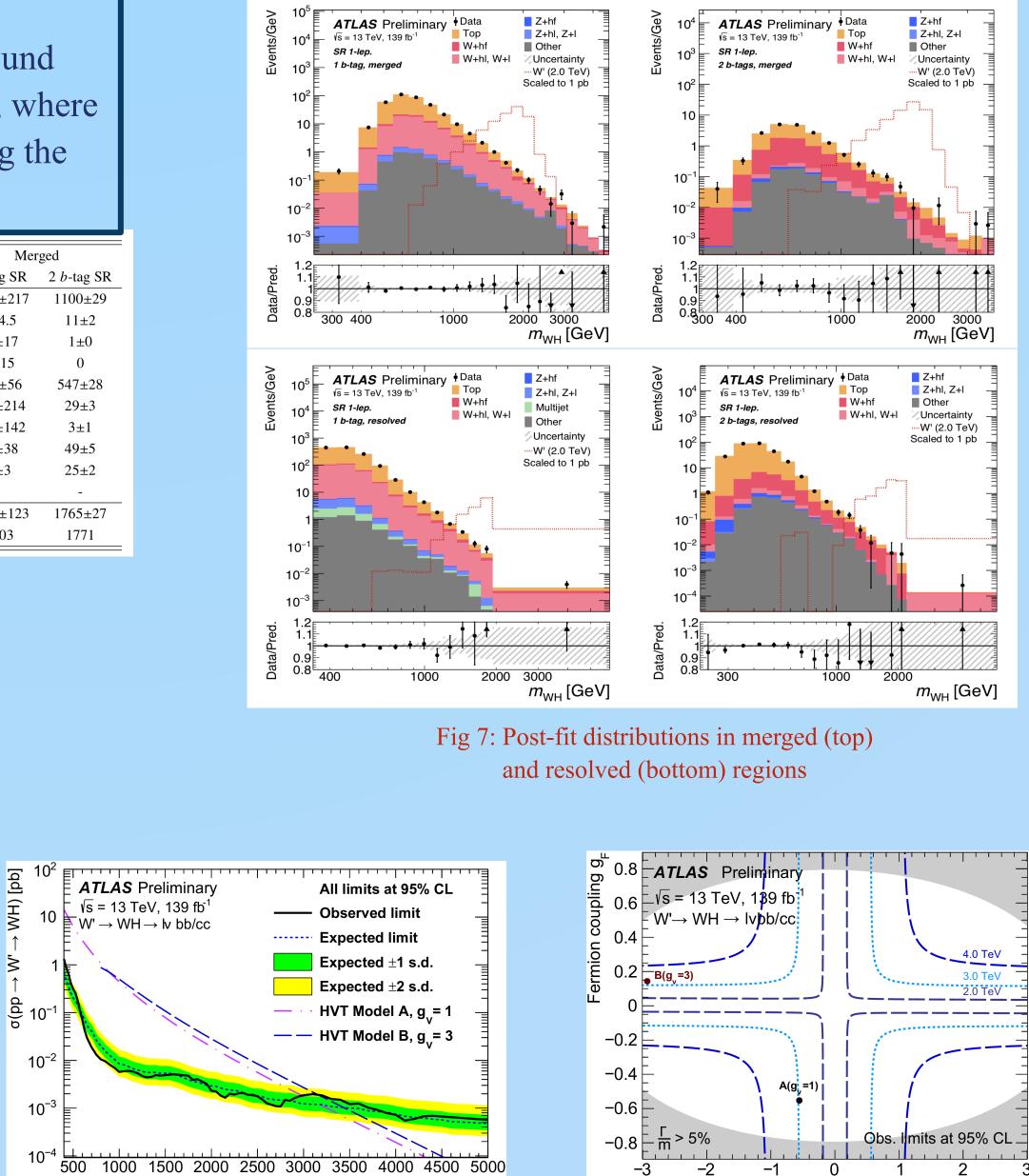


Fig 5 and 6: Shape systematic uncertainties for MJ estimation

4. Statistical analysis


To test the resonance, the templates m_{WH} from the signal and background samples are fit to data using a binned maximum-likelihood approach, where the binning is optimized to maximize the sensitivity while minimizing the impact of statistical fluctuations.

Region	signal regions	control regions					
Resolved							
<i>b</i> -tags	1, 2 <i>b</i> -tag	1, 2 <i>b</i> -tag					
Mass window	$110 < m_{jj} < 140 \text{ GeV}$	$50 < m_{jj} < 110 \text{ GeV} \mid\mid 140 < m_{jj} < 200 \text{ GeV}$					
Merged							
<i>b</i> -tags	1, 2 <i>b</i> -tag	1, 2 <i>b</i> -tag					
Mass window	$75 < m_J < 145 \text{ GeV}$ $50 < m_J < 75 \text{ GeV} \mid\mid 145 < m_J < 200 \text{ GeV}$						

	Reso	lved	Merged		
	1 <i>b</i> -tag SR	2 <i>b</i> -tag SR	1 <i>b</i> -tag SR	2 b-tag SR	
Тор	86911 ±753	18272 ± 111	26215±217	1100±29	
Z+hf	80±19	58 ± 12	22±4.5	11 ± 2	
Z+hl	561±110	6±1	107 ± 17	1 ± 0	
Z+l	117 ± 28	1 ± 0	38±15	0	
W+hf	2674 ± 168	1344 ± 76	1120 ± 56	547 ± 28	
W+hl	21439 ± 816	126 ± 9	5275 ± 214	29±3	
W+1	2706 ± 443	2 ± 1	1240 ± 142	3±1	
Diboson	235 ± 30	24±3	370 ± 38	49 ± 5	
SM VH	143±16	182 ± 19	31±3	25 ± 2	
Multijet	324±81	-	-	-	
Total	115190 ± 282	20015±86	34418±123	1765±27	
Data	115145	20017	34403	1771	

Tab 3 and 4: Regions and the post-fit yields

5. Conclusion

m_{w'} [GeV]

- ✓ No significant excess is observed above the SM prediction, and upper limits are set on the production cross-section for pp→ W' times the branching fraction for W' → WH.
- ✓ W' masses below 2.95 TeV are excluded for the HVT
 benchmark Model A ^[1]; for Model B ^[1] W' masses below 3.15
 TeV are excluded.
- ✓ The cross-section limits improve on the results from the last publication with Run 2 dataset of 36.1 fb⁻¹ in ATLAS ^[2]. The improvements range from about 200% for resonance mass 400 GeV to about 350% for a mass of 5 TeV.
- \checkmark The paper is in preparation.

6. References

[1] arXiv: 1402.4431 [hep-ph].[2] arXiv: 1607.05621 [hep-ex].

Fig 8: Expected and observed upper limits at 95% CL on the production cross-section for $pp \rightarrow W' \rightarrow WH$

t.li at cern.ch

Fig 9: Observed limits on HVT Model at 95% CL in the g_F vs. g_H plane for W masses of 2, 3 and 4 TeV

Higgs and vector boson coupling g