

Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at 13 TeV with the CMS detector

Qianying GUO

(Beihang University && Institute of High Energy Physics, Beijing)

On behalf of CMS collaboration

The 7th China LHC Physics Workshop (CLHCP2021)

- 4I channel is one of the most important channel for property measurement of Higgs boson
- A large signal-to-background ratio
- Complete reconstruction of final state decay products
- Excellent lepton momentum reconstruction

Analysis Strategy-- Event reconstruction and selections

- Loose e (μ) passing selections $P_T > 7(5)$ GeV; $|\eta| < 2.5(2.4)$; vertex cut $d_{xy} < 0.5 \ cm$; $d_z < 1 \ cm$; $SIP_{3D} < 3$; BDT Selections (RelPFIso($\Delta R = 0.3$) < 0.35);
- Z candidate
 - Any OS-SF pair that satisfy $12 < m_{ll(\gamma)} < 120 \text{ GeV}$
- Build all possible ZZ candidates defined as pairs of non-overlapping Z candidate; define Z_1 candidate with $m_{ll(\gamma)}$ closest to the POG m(Z) mass
 - $m_{Z1} > 40 \text{ GeV}; P_T(l1) > 20 \text{ GeV}; P_T(l2) > 10 \text{ GeV}$
 - $\Delta R > 0.02$ between each of the four leptons
 - $m_{ll} > 4$ GeV for OS pairs (regardless of flavour)
 - Reject 4 μ and 4e candidates where the alternative pair $Z_a Z_b$ satisfies $|m_{Z_a} m_Z| < |m_{Z_1}|$
 - $-m_Z$ and $m_{Z_h} < 12 \text{ GeV}$
 - $m_{4l} > 70~{
 m GeV}$
- If more than one ZZ candidate is left, choose the one of highest \mathcal{D}_{bkg}^{kin} .
- If \mathcal{D}_{bkg}^{kin} is the same, take the one with Z_1 mass closest to m_{Z_1}

Observables

• Two observables used: m₄₁; kd

CMS

105 < m₄₁ < 140 GeV

110

115

VBF-1jet-tagged,

D^{kin} bkg

1.00

0.75

0.50

0.25

0.00

105

• Three different kd discriminant applied.

VH-lep-tagged,

120

125

130

– Discriminant sensitive to $gg/q\bar{q} \rightarrow 4l$ kinematics

$$\mathcal{D}_{
m bkg}^{
m kin} = \left[1 + rac{\mathcal{P}_{
m bkg}^{
m qar q}(ec \Omega^{
m H o 4\ell} | m_{4\ell})}{\mathcal{P}_{
m sig}^{
m gg}(ec \Omega^{
m H o 4\ell} | m_{4\ell})}
ight]^{-1}$$
 (1)

- Dedicated production-dependent \mathcal{D}_{kgd} discriminants used in VBF-2jet tagged and hadronic VH tagged categories $\left[c^{VBF}(m_{4\ell}) \left[\mathcal{P}_{blc}^{EW}(\vec{\Omega}^{H+jj}|m_{4\ell}) + \mathcal{P}_{blc}^{QCD}(\vec{\Omega}^{H+jj}|m_{4\ell}) \right] \right]^{-1}$

 Four discriminants calculated are used to enhance the purity of event categories

137 fb-

ttH-lep-tagged,

$$\mathcal{P}_{bkg}^{VBF+dec} = \left[1 + \frac{\mathcal{P}_{ij}(\vec{\Omega}^{H+ij}|m_{4\ell})}{\mathcal{P}_{ijkg}^{EW}(\vec{\Omega}^{H+ij}|m_{4\ell})}\right]^{-1}$$
(2)

$$\mathcal{P}_{bkg}^{VH+dec} = \left[1 + \frac{\mathcal{P}_{Hij}(\vec{\Omega}^{H+ij}|m_{4\ell})}{\mathcal{P}_{ijkg}^{EW}(\vec{\Omega}^{H+ij}|m_{4\ell})}\right]^{-1}$$
(2)

$$\mathcal{P}_{bkg}^{VH+dec} = \left[1 + \frac{\mathcal{P}_{Hij}(\vec{\Omega}^{H+ij}|m_{4\ell})}{\mathcal{P}_{ijkg}^{EW}(\vec{\Omega}^{H+ij}|m_{4\ell})}\right]^{-1}$$
(3)

$$\mathcal{P}_{ijk}^{VBF} = \left[1 + \frac{\mathcal{P}_{Hij}(\vec{\Omega}^{H+ij}|m_{4\ell})}{\mathcal{P}_{VBF}(\vec{\Omega}^{H+ij}|m_{4\ell})}\right]^{-1}$$
(3)

$$\mathcal{P}_{ijk}^{VBF} = \left[1 + \frac{\mathcal{P}_{Hij}(\vec{\Omega}^{H+ij}|m_{4\ell})}{\mathcal{P}_{VBF}(\vec{\Omega}^{H+ij}|m_{4\ell})}\right]^{-1}$$
(3)

$$\mathcal{P}_{ijk}^{VBF} = \left[1 + \frac{\mathcal{P}_{Hij}(\vec{\Omega}^{H+ij}|m_{4\ell})}{\mathcal{P}_{Zjet}(\vec{\Omega}^{H+ij}|m_{4\ell})}\right]^{-1}$$
(3)
Eur. Phys. J. C 81
(2021) 488

m_{4l} (GeV)

140

135

STXS Production Bins-- STXS1.2 bins

- The primary goals of the STXS framework are to maximize the sensitivity of the measurements while at the same time to minimize their dependence on the theory predictions.
- The events are further binned within ggH, VBF, and VH in order to study deeper structure within each production mechanisms. (10+6+2+1)

mjj 350

700

1000

1500

P H > 200

150

 $=VBF + V (\rightarrow qq)H$

m_{ii} > 350

P H < 200

25

≥ 2 – jet

= 2 - iet

= 2-jet

qqH - 2i/m_{ii}[350,700]

ggH - 2j/mji>700

qqH

m;; < 350

2⁵ PH_{jj} ∞

mii

60

120

350

= 0 - iet = 1 - iet

qqH - rest

Reconstructed Event categorization – StageO

 Selected events are classified into seven exclusive categories to improve the sensitivity to the Higgs boson production mechanisms.

- VBF-2jet-tagged category requires exactly 4 leptons. In addition there must be either 2 or 3 jets of which at most 1 is b-tagged, or at least 4 jets and no b-tagged jets. Finally, $D_{2jet} > 0.5$ is required.
- VH-hadronic-tagged category requires exactly 4 leptons. In addition there must be 2 or 3 jets, or at least 4 jets and no b-tagged jets. Finally, $D_{VH} > 0.5$ is required.
- VH-leptonic-tagged category requires no more than 3 jets and no b-tagged jets in the event, and exactly 1 additional lepton or 1 additional pair of opposite sign same flavor leptons. This category also includes events with no jets and at least 1 additional lepton.
- t**tH**-hadronic-tagged category requires at least 4 jets of which at least 1 is b-tagged and no additional leptons.
- tītH-leptonic-tagged category requires at least 1 additional lepton in the event.
- **VBF-1jet-tagged category** requires exactly 4 leptons, exactly 1 jet and $D_{1jet} > 0.7$.
- Untagged category consists of the remaining events.

Reconstructed Event categorization – Stage1.2

• Events are Further subdivided in the second step to closely match the merged stage 1.2 production bins by exploiting additional variables.

Reconstructed event category	1 st categorization step	Number of jets	Kinematical requirements (GeV)	Targeted production bin	
Untagged-0j- $p_{\mathrm{T}}^{4\ell}[0,10]$	Untagged	0	$0 < p_{\mathrm{T}}^{4\ell} < 10$	ggH-0j/p _T [0,10]	-
Untagged-0j- $p_{\mathrm{T}}^{4\ell}[10,200]$	Untagged	0	$10 < p_{ m T_{ m o}}^{4\ell} < 200$	ggH-0j/p _T [10,200]	
Untagged-1j- $p_{\mathrm{T}}^{4\ell}[0,60]$	Untagged	1	$0 < p_{\mathrm{T}_{+}}^{4\ell} < 60$	ggH-1j/p _T [0,60]	
Untagged-1j- $p_{\mathrm{T}}^{4\ell}$ [60, 120]	Untagged	1	$60 < p_{ m T_{-}}^{4\ell} < 120$	ggH-1j/p _T [60,120]	
Untagged-1j- $p_{\rm T}^{4\ell}$ [120, 200]	Untagged	1	$120 < p_{ m T}^{4\ell} < 200$	ggH-1j/p _T [120,200]	
Untagged-2j- $p_{\mathrm{T}}^{4\ell}[0,60]$	Untagged	2	$0 < p_{ ext{T}}^{4\ell} < 60$, $m_{ ext{jj}} < 350$	ggH-2j/p _T [0,60]	
Untagged-2j- $p_{\mathrm{T}}^{4\ell}[60,120]$	Untagged	2	$60 < p_{\mathrm{T}}^{4\ell} < 120, m_{\mathrm{jj}} < 350$	ggH-2j/p _T [60,120]	
Untagged-2j- $p_{\mathrm{T}}^{4\ell}$ [120, 200]	Untagged	2	$120 < p_{\mathrm{T}}^{4\ell} < 200, m_{\mathrm{ii}} < 350$	ggH-2j/p _T [120,200]	
Untagged- $p_{\rm T}^{4\ell} > 200$	Untagged	_	$p_{\rm T}^{4\ell} > 200$	$ggH/p_T > 200$	
Untagged-2j- $m_{jj} > 350$	Untagged	2	$m_{\rm jj}>350$	$ggH-2j/m_{jj} > 350$	
VBF-1jet-tagged	VBF-1jet-tagged	—	_	qqH-rest	
VBF-2jet-tagged-m _{ii} [350,700]	VBF-2jet-tagged	_	$p_{\mathrm{T}}^{4\ell} < 200, p_{\mathrm{T}}^{4\ell\mathrm{j}\mathrm{j}} < 25,350 < m_{\mathrm{j}\mathrm{j}} < 700$	qqH-2j/m _{jj} [350,700]	
VBF-2jet-tagged- $m_{jj} > 700$	VBF-2jet-tagged	—	$p_{ m T}^{4\ell} <$ 200, $p_{ m T}^{4\ell { m jj}} <$ 25, $m_{ m jj}$ $>$ 700	qqH-2j/m _{jj} > 700	
VBF-3jet-tagged- $m_{ii} > 350$	VBF-2jet-tagged	_	$p_{\mathrm{T}}^{4\ell} < 200, p_{\mathrm{T}}^{4\ell\mathrm{jj}} > 25, m_{\mathrm{jj}} > 350$	qqH-3j/m _{ij} > 350	
VBF-2jet-tagged- $p_{\rm T}^{4 \widetilde{\ell}} > 200$	VBF-2jet-tagged	_	$p_{\rm T}^{4\ell} > 200, m_{\rm ii} > 350$	$qqH-2j/p_T > 200$	
VBF-rest	VBF-2jet-tagged	—	$m_{jj} < 350$	qqH-rest	
VH-hadronic-tagged- m_{ii} [60, 120]	VH-hadronic-tagged	_	$60 < m_{ m ii} < 120$	qqH-2j/m _{ii} [60,120]	
VH-rest	VH-hadronic-tagged	—	$m_{\rm jj} < 60 \ { m or}^{''} m_{\rm jj} > 120$	qqH-rest	Eur. Phys. J. C 81
VH-leptonic-tagged- $p_T^{4\ell}[0, 150]$	VH-leptonic-tagged	—	$p_{ ext{T}}^{4\ell} < 150$	$VH-lep/p_T^H[0,150]$	(2021) 488
VH-leptonic-tagged- $p_{\mathrm{T}}^{4\ell} > 150$	VH-leptonic-tagged	—	$p_{\mathrm{T}}^{4\ell} > 150$	$ ext{VH-lep}/ ext{p}_{ ext{T}}^{ ext{H}} > 150$	
$t\bar{t}H$ -leptonic-tagged	ttH-leptonic-tagged	—	—	ttH	
$t\bar{t}H$ -hadronic-tagged	$t\bar{t}H$ -hadronic-tagged	—	—	ttH	7

Reconstructed Event categorization – Stage1.2

- Distributions of the expected and observed number of events for the reconstructed event categories in the mass region 105 < m4l < 140 GeV.
- The yields of the different H boson production mechanisms with mH = 125 GeV, and those of the ZZ and rare electroweak backgrounds are normalized to the SM expectations, while the Z+X background yield is normalized to the estimate from the data.

Background estimation

- Irreducible background
 - Production of ZZ via $q\bar{q}$ annihilation or gluon fusion
 - Estimated using simulation

Channel	4e	4μ	2e2µ	4ℓ		
$q \bar{q} ightarrow ZZ$	333^{+57}_{-53}	622^{+31}_{-44}	815 ± 73	1770^{+98}_{-101}		
gg ightarrow ZZ	$75.1^{+14.3}_{-13.5}$	$116.6^{+11.7}_{-12.8}$	176.9 ± 23.0	$368.5^{+29.5}_{-29.6}$		
Z + X	19.3 ± 7.2	50.8 ± 15.2	64.6 ± 15.6	134.7 ± 22.9		
Sum of backgrounds	$428^{+59.2}_{55.2}$	$790^{+36.4}_{-48.3}$	1057 ± 78.1	$2274\substack{+104.9\\-107.7}$		
Signal ($m_{\rm H} = 125$ GeV)	$19.6^{+3.3}_{-3.1}$	$40.8^{+2.5}_{-2.9}$	50.7 ± 5.6	$111.1^{+6.9}_{-7.0}$		
Total expected	$447^{+59.3}_{55.2}$	$830^{+36.5}_{-48.4}$	1108 ± 78.3	$2385^{+105.1}_{-107.9}$		
Observed	462	850	1130	2442		

• Reducible background

CMS PAS HIG-19-001

- Secondary leptons produced by heavy-flavor jets
- Misidentified as leptons from decay of heavy-flavor hadron, in-flight decays of light mesons within jets, or (for electrons) decay of charged hadrons overlapping with π^0 decays.
- Two dependent methods used to estimated Z+X background: OS and SS
 - Fake rates calculated in Z+l control region
 - Z+X yields estimated in 2 orthogonal regions of Z+II control region
 - Final estimate combination of 2 methods

Systematics Uncertainties

- The experimental uncertainties
 - mainly originating from the imperfect knowledge of the detector
 - depending on the year of data taking
 - Integrated luminosity
 - Lepton identification and reconstruction efficiency
- Theoretical uncertainties
 - accounting for the uncertainties in the modeling of the signal and background processes.
 - renormalization and factorization scale and choice of PDF set
- In combination of the three-year data, the theoretical uncertainties and experimental ones related to leptons or jets are treated as correlated while all other ones from experimental sources are taken as uncorrelated.

- Perform multidimensional maximum likelihood fit to (m_{4l}, KD) templates in 66channels (3×22)
- Total PDF is defined as: $\mathcal{L}_{2D}(m_{4\ell}, \mathcal{D}_{bkg}^{kin}) = \mathcal{L}(m_{4\ell})\mathcal{L}(\mathcal{D}_{bkg}^{kin}|m_{4\ell}).$

137 fb⁻¹ (13 TeV)

H→ZZ→4I

Simplified Template Cross Section

The measured cross sections $(\sigma B)_{obs}$ and the SM predictions $(\sigma B)_{SM}$ for H \rightarrow ZZ decay for the stage 0 STXS production bins and the inclusive measurement (left), the merged stage 1.2 STXS production bins (right) at $m_{\rm H} = 125.38$ GeV

Eur. Phys. J. C 81 (2021) 488

Fiducial/Differential Cross Section

tīH

 0.315 ± 0.004

 0.588 ± 0.007

• This measurement has minimal dependence on the assumptions of the relative fraction or kinematic distributions of the separate production modes.

 0.181 ± 0.009

	Requirements	for the H $ ightarrow 4\ell$ fiducial									
	Lepto	n kinematics and isolation	$\mathbf{N}_{i}^{f,i}(\mathbf{m}) = \mathbf{N}_{i}^{f,i}(\mathbf{m}) + \mathbf{N}_{i}^{f,i}(\mathbf{m}) + \mathbf{N}_{i}^{f,i}(\mathbf{m}) + \mathbf{N}_{i}^{f,i}(\mathbf{m}) + \mathbf{N}_{i}^{f,i}(\mathbf{m})$								
Leading lepton $p_{\rm T}$			$p_{\rm T} > 2$	0 GeV	$N_{\text{exp}}(m_{4\ell}) = N_{\text{fid}}(m_{4\ell}) + N_{\text{nonfid}}(m_{4\ell}) + N_{\text{nonres}}(m_{4\ell}) + N_{\text{bkg}}(m_{4\ell})$						
Next-to-leading	lepton $p_{\rm T}$		$p_{\mathrm{T}} > 1$	0 GeV	$=\sum_{i} \epsilon_{i,j}^{f} \left(1+f_{ ext{nonfid}}^{f,i} ight) \sigma_{ ext{fid}}^{f,j} \mathcal{LP}_{ ext{res}}(m_{4\ell})$						
Additional electr	cons (muons) $p_{\rm T}$		$p_{\rm T} > 7(4)$	5) GeV							
Pseudorapidity of	of electrons (muons)		$ \eta < 2$.5(2.4)	f_{i}						
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton			ton < 0.35	$5 \cdot p_{\mathrm{T}}$	$+ N_{\rm nonres}^{j\mu} \mathcal{P}_{\rm nonres}(m_{4\ell}) + N_{\rm bkg}^{j\mu} \mathcal{P}_{\rm bkg}(m_{4\ell}).$						
		Event topology									
Existence of at le	ast two same-flavor OS	5 lepton pairs, where lep	tons satisfy criteria al	pove							
Inv. mass of the Z ₁ candidate			$40 \text{GeV} < m_Z$	$_{1} < 120 \text{GeV}$	The integrated fiducial cross section is measured to be						
Inv. mass of the Z_2 candidate			$12 \text{GeV} < m_Z$	< 120 GeV							
Distance between selected four leptons			$\Delta R(\ell_i, \ell_j) > 0.0$	2 for any $i \neq j$							
Inv. mass of any opposite sign lepton pair			$m_{\ell^+\ell'^-}$ >	> 4 GeV	$\sigma_{fid.} = 2.84^{+0.23}_{-0.22}(stat.)^{+0.26}_{-0.21}(syst.)fb$						
Inv. mass of the selected four leptons		$105 \mathrm{GeV} < m_{2}$	$_{\rm H\ell} < 140{ m GeV}$								
					SM DOALDOAF CL						
Signal process	$\mathcal{A}_{ ext{fid}}$	ϵ	$f_{ m nonfid}$	$(1 + f_{\text{nonfid}})\epsilon$	$\sigma_{fid}^{SM} = 2.84 \pm 0.15 fb$						
ggH (POWHEG)	0.402 ± 0.001	0.598 ± 0.002	0.054 ± 0.001	0.631 ± 0.002							
VBF	0.445 ± 0.002	0.615 ± 0.002	0.043 ± 0.001	0.641 ± 0.003							
WH 0.329 ± 0.002 0.604 ± 0.003		0.078 ± 0.002	0.651 ± 0.004	Fur Dhug L C 91							
ZH 0.340 ± 0.003 0.613 ± 0.005		0.082 ± 0.004 0.663 ± 0.07		EUR PRYS. J. C & L							

 0.694 ± 0.010

(2021) 488

Fiducial/Differential Cross Section

The measured inclusive fiducial cross section in different final states and as a function of √s. (left)
Differential cross sections as a function of the p_T and rapidity of the H boson, the number of associated jets, and the p_T of the leading associated jet are determined. (right)

•The sub-dominant component of the the signal (VBF + VH + tt⁻H) is denoted as XH.

Eur. Phys. J. C 81 (2021) 488

Summary

- Several measurements of Higgs boson production in four-lepton final state at $\sqrt{s} = 13TeV$ are presented, using data sample corresponding to an integrated luminosity of 137.1 fb⁻¹.
 - The measured signal strength modifier is $\mu = 0.94 \pm 0.07(stat)^{+0.07}_{-0.06}(theo)^{+0.06}_{-0.05}(exp)$.
 - A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented.
 - Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured.
- All results are consistent, within their uncertainties, with the expectations for the Standard Model H boson.

Backup

Distribution of m_{41} of Run-2 data Eur. Phys. J. C 81

(2021) 488

Distribution of m_{41} VS kinematic discriminants

- Distribution of three different kinematic discriminants versus m_{4l}: D^{VBF+dec}_{bkg} (left) and D^{VH+dec}_{bkg} (right) shown in the mass region 105 < m < 140GeV.
- The blue scale represents the expected total number of ZZ, rare electroweak, and Z+X background events.
- The red scale represents the number of expected SM H boson signal events for $m_{\rm H}$ = 125 GeV.
- The points show the data from the categories listed in the legend.

Eur. Phys. J. C 81 (2021) 488

Expected Yields

Eur. Phys. J. C 81 (2021) 488

Reconstructed event	Signal						Background				Expected		Observed	
category	ggH	VBF	WH	ZH	tīH	bbH	tH	$q\overline{q} \to ZZ$	$gg \to ZZ$	EW	Z+X	signal	total	
Untagged-0j- $p_{ m T}^{4\ell}[0,10]$	27.7	0.09	0.03	0.03	0.00	0.15	0.00	71.5	3.06	0.01	3.21	27.9±0.1	106 ± 0	114
Untagged-0j- $p_{\mathrm{T}}^{4\ell}$ [10, 200]	96.2	1.69	0.60	0.77	0.01	1.01	0.00	98.1	11.6	0.35	37.8	100 ± 0	$248{\pm}1$	278
Untagged-1j- $p_{\mathrm{T}}^{4\ell}[0, 60]$	26.8	1.51	0.56	0.48	0.01	0.45	0.01	25.3	3.02	0.64	14.2	$29.8{\pm}0.1$	$72.9{\pm}0.4$	74
Untagged-1j- $p_{\mathrm{T}}^{4\ell}[60,120]$	13.5	1.31	0.51	0.41	0.02	0.11	0.01	7.81	0.82	0.62	7.95	$15.9 {\pm} 0.1$	$33.1 {\pm} 0.3$	20
Untagged-1j- $p_{\mathrm{T}}^{4\ell}$ [120, 200]	3.51	0.60	0.17	0.17	0.01	0.02	0.00	1.15	0.19	0.25	1.63	$4.48{\pm}0.05$	$7.69{\pm}0.16$	11
Untagged-2j- $p_{\mathrm{T}}^{4\ell}[0,60]$	3.45	0.29	0.15	0.14	0.08	0.09	0.02	2.14	0.32	0.63	4.75	$4.20 {\pm} 0.06$	12.1 ± 0.2	14
Untagged-2j- $p_{\mathrm{T}}^{4\ell}[60,120]$	5.26	0.56	0.24	0.19	0.12	0.04	0.03	2.19	0.30	0.72	4.14	$6.43 {\pm} 0.06$	$13.8{\pm}0.2$	15
Untagged-2j- $p_{\mathrm{T}}^{4\ell}$ [120, 200]	3.07	0.40	0.16	0.13	0.07	0.01	0.02	0.75	0.14	0.34	1.19	$3.86 {\pm} 0.05$	$6.28{\pm}0.14$	7
Untagged- $p_{\mathrm{T}}^{4\ell} > 200$	2.79	0.62	0.21	0.17	0.07	0.01	0.02	0.43	0.21	0.21	0.73	$3.89 {\pm} 0.04$	$5.47{\pm}0.11$	3
Untagged-2j- $m_{\rm ij} > 350$	0.77	0.16	0.06	0.04	0.05	0.01	0.01	0.34	0.06	0.31	1.71	1.12 ± 0.02	$3.54{\pm}0.14$	3
VBF-1jet-tagged	15.5	3.29	0.22	0.16	0.00	0.13	0.01	6.85	1.53	0.20	2.44	$19.3 {\pm} 0.1$	$30.3 {\pm} 0.2$	27
VBF-2jet-tagged-m _{ii} [350,700]	0.83	1.19	0.01	0.01	0.00	0.01	0.00	0.19	0.07	0.11	0.14	2.05 ± 0.03	$2.55{\pm}0.05$	2
VBF-2jet-tagged- $m_{ii} > 700$	0.43	1.96	0.00	0.00	0.00	0.00	0.00	0.07	0.05	0.12	0.03	2.40 ± 0.02	$2.67 {\pm} 0.03$	1
VBF-3jet-tagged- $m_{jj} > 350$	2.52	2.35	0.06	0.06	0.03	0.03	0.05	0.62	0.21	0.64	2.43	$5.11 {\pm} 0.05$	$9.01{\pm}0.17$	12
VBF-2jet-tagged- $p_{\rm T}^{4\ell} > 200$	0.44	0.79	0.01	0.01	0.01	0.00	0.01	0.03	0.03	0.04	0.06	$1.26 {\pm} 0.02$	$1.42{\pm}0.03$	0
VBF-rest	2.48	0.94	0.13	0.09	0.04	0.04	0.01	0.98	0.20	0.39	2.18	$3.74 {\pm} 0.05$	$7.49{\pm}0.17$	5
VH-hadronic-tagged-m _{ii} [60, 120]	4.11	0.25	1.09	0.96	0.13	0.06	0.02	1.69	0.22	0.52	2.93	6.62 ± 0.06	12.0 ± 0.2	12
VH-rest ["]	0.57	0.03	0.09	0.06	0.03	0.01	0.00	0.16	0.02	0.06	0.33	0.79 ± 0.02	$1.36{\pm}0.06$	0
VH-leptonic-tagged- $p_{ m T}^{4\ell}[0,150]$	0.33	0.04	0.85	0.26	0.10	0.03	0.03	2.16	0.36	0.19	1.11	$1.64{\pm}0.02$	$5.47{\pm}0.13$	10
VH-leptonic-tagged- $p_{\mathrm{T}}^{4\ell} > 150$	0.02	0.01	0.21	0.06	0.04	0.00	0.01	0.05	0.01	0.03	0.08	$0.35 {\pm} 0.01$	$0.52{\pm}0.03$	0
ttH-leptonic-tagged	0.02	0.01	0.02	0.02	0.68	0.00	0.03	0.08	0.01	0.23	0.21	$0.79 {\pm} 0.01$	$1.32{\pm}0.07$	0
ttH-hadronic-tagged	0.18	0.05	0.03	0.05	0.86	0.01	0.03	0.03	0.01	0.82	1.06	1.22 ± 0.01	$3.15{\pm}0.14$	2

The impact of the dominant systematic uncertainties

Eur. Phys. J. C 81 (2021) 488

Event categorization – StageO

 Correlation matrices between the measured cross sections for the stage 0 for H → ZZ decay

Event categorization – Stage1.2

 Correlation matrices between the measured cross sections for the merged stage 1.2 for H → ZZ decay