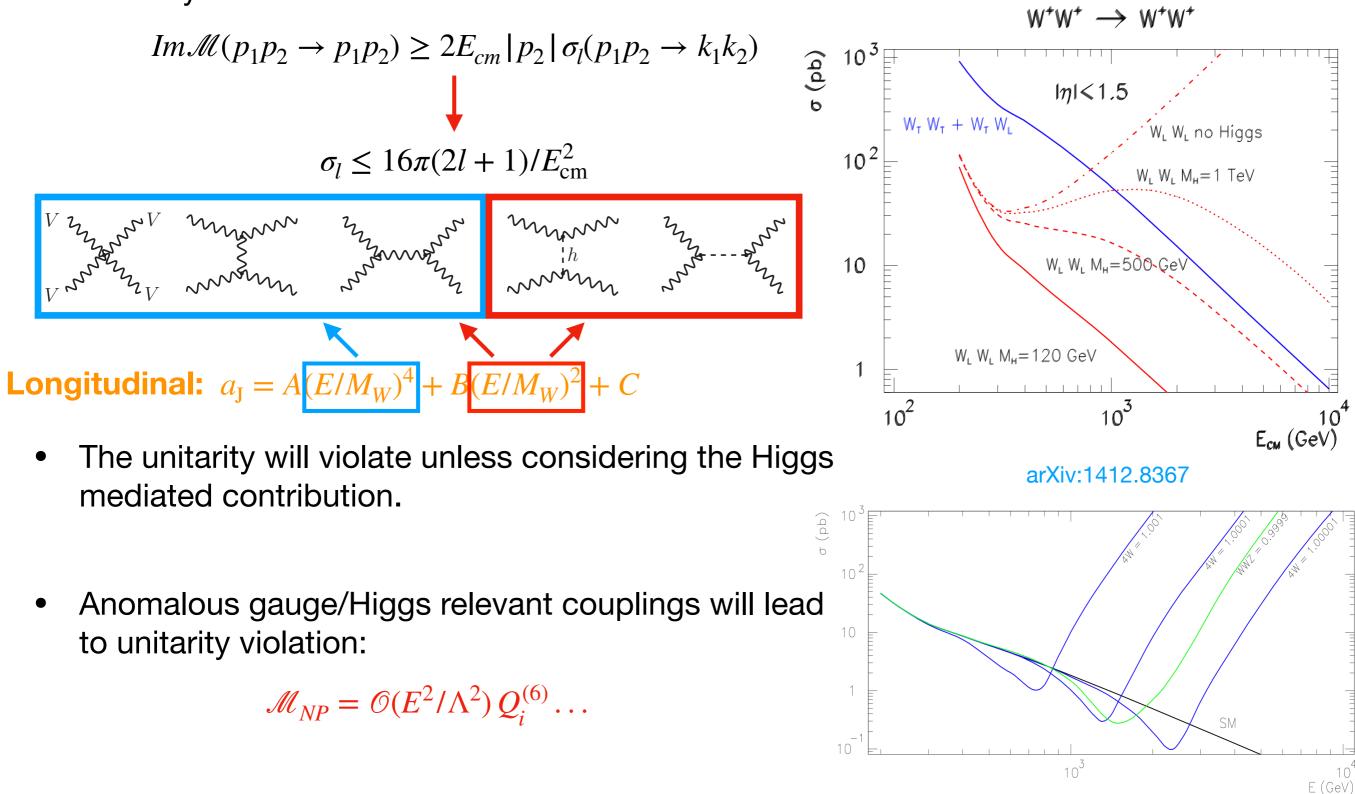
Operator Correlation in Electroweak Scattering at LHC

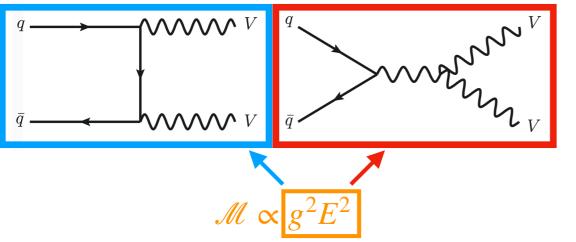
Jian-Nan Ding Lanzhou University

Nov. 27, 2021 CLHCP 2021 Workshop


In collaboration with Qing-Hong Cao, Hao-Ran Jiang, Fu-Sheng Yu and Guo-Jin Zeng.

- Electroweak scattering and operator correlation
- Operators correlation in electroweak scattering
- Consistency of SMEFT
- Summary

Jian-Nan Ding


Vector Boson Scattering

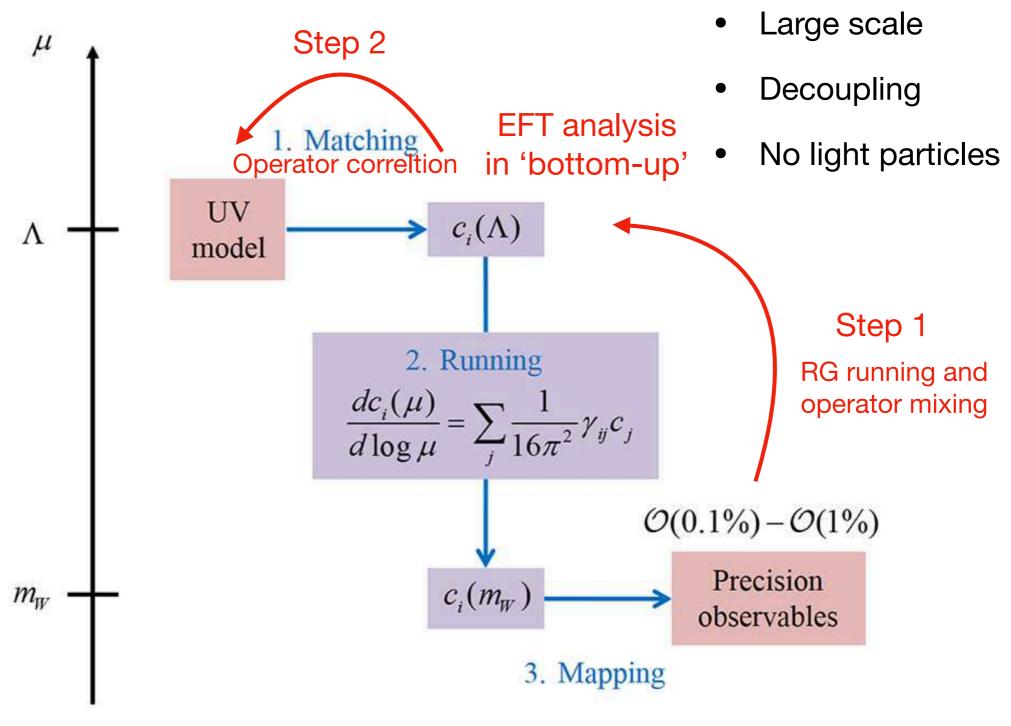
• Unitarity violation:

di-boson production

- Precise measurement of di-boson production can accurately examine electroweak gauge theory.
- Unitarity violation:

• Anomalous couplings may also lead to unitarity violation

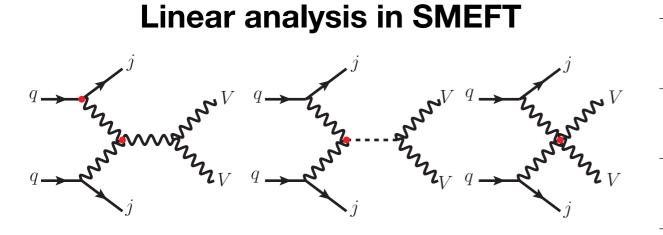
Anomalous signal = new physics evidence


No deviation = No new physics ?

Correlated cancellation in new physics?

Jian-Nan Ding

Electroweak scattering in SMEFT


$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^{(4)} + \frac{c_i}{\Lambda} \mathcal{O}_i^{(5)} + \frac{c_j}{\Lambda^2} \mathcal{O}_j^{(6)} + \dots$$

Henning, Lu, Murayama, 1214.1837

Operator Correlation in Electroweak Scattering at LHC

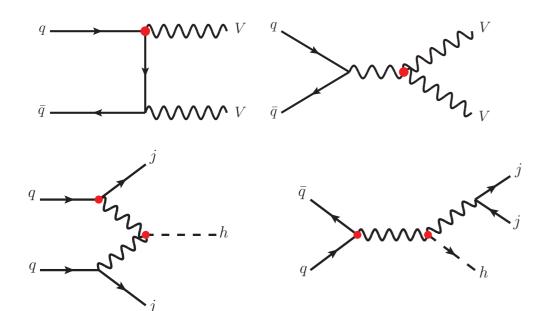
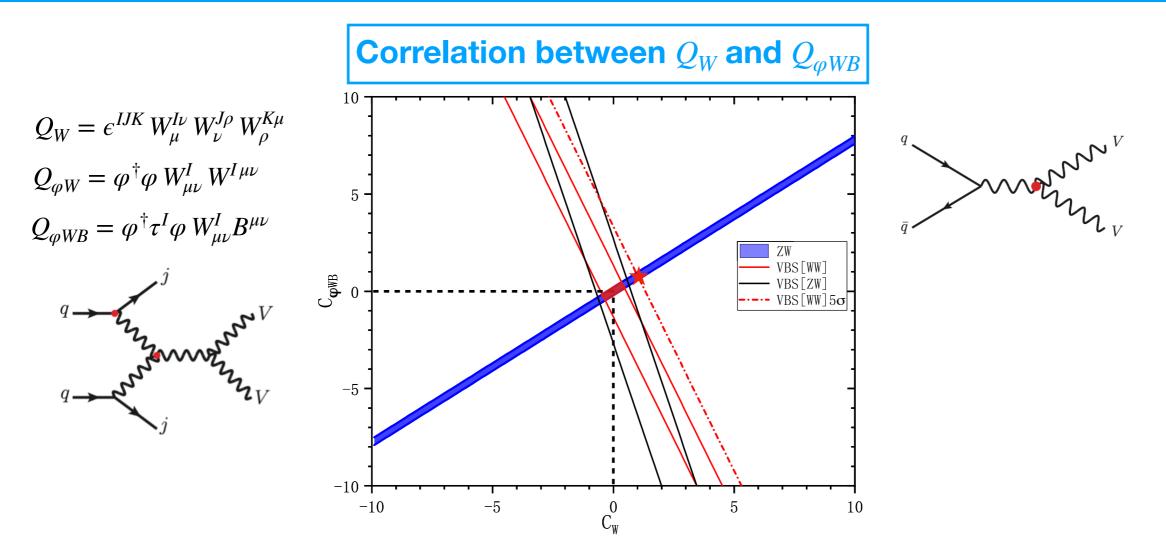
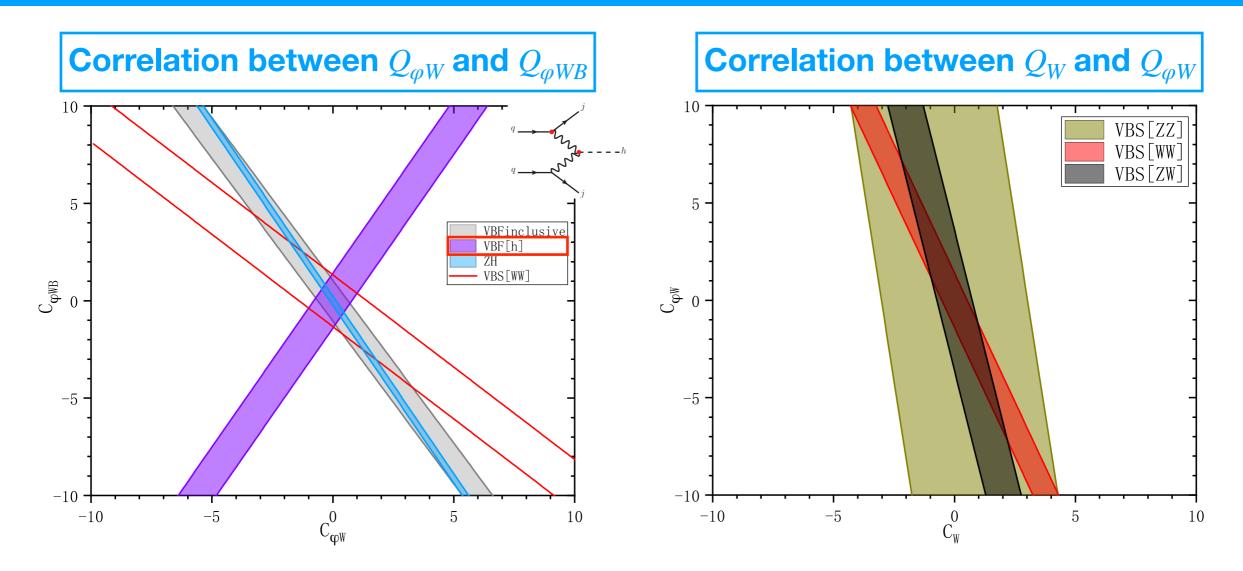

Electroweak scattering in SMEFT

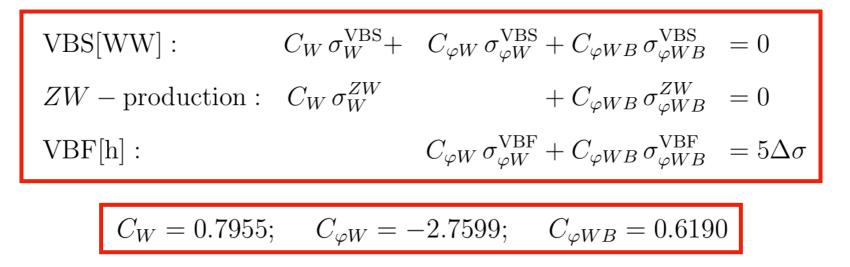
TABLE I: Operator formula in Warsaw basis[28] of SMEFT					
Operators	Q_W	$Q_{arphi W}$	$Q_{arphi B}$	$Q_{arphi WB}$	
Formula	$Q_W \ \epsilon^{IJK} W^{I\mu}_\mu W^{J ho}_ u W^{K\mu}_ ho$	$arphi^\dagger arphi \; W^I_{\mu u} W^{I\mu u}$	$arphi^\dagger arphi \; B_{\mu u} B^{\mu u}$	$egin{aligned} Q_{arphi WB} \ arphi^\dagger au^I arphi \; W^I_{\mu u} B^{\mu u} \end{aligned}$	
Operators	$Q_{\varphi D}$ — EW	$PT - Q_{\varphi \Box}$	$Q^{(1)}_{arphi q}$	$Q^{(3)}_{arphi q}$	
Formula	$(arphi^\dagger D^\mu arphi)^* (arphi^\dagger D_\mu arphi)$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$ ($(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (ar{q}_p au^I \gamma^\mu q_r)$	
Operators	$Q_{arphi u}$	$Q_{arphi d}$	Q_{uW}	Q_{uB}	
Formula	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$) $(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$(ar{q}_p\sigma^{\mu u}u_r)\widetilde{arphi}B_{\mu u}$	


 $\sigma_{pp \to jjZW^{\pm}}^{EW} = \sigma_{SM} + 0.03557 c_W + 0.01103 c_{\varphi W} + 0.000349 c_{\varphi B} + 0.04592 c_{\varphi WB}$ $+ 0.019750 c_{\varphi q}^{(1)} + 0.2538 c_{\varphi q}^{(3)} + 0.004613 c_{\varphi u} - 0.000118 c_{\varphi d} \qquad - 0.1414 c_{uW} - 0.002348 c_{uB} \text{ (pb)}$

Tree level correlation about same operators


Operator	Q_W	$Q_{\varphi W}$	$Q_{\varphi B}$	$Q_{\varphi WB}$	$Q^{(1)}_{arphi q}$	$Q^{(3)}_{\varphi q}$	$Q_{\varphi u}$	$Q_{arphi d}$	Q_{uW}	Q_{uB}
Process										
$pp \to jjW^\pm W^\pm$	*	*		*	*	*			*	
$pp \to jjZW^\pm$	*	*	*	*	*	*	*	*	*	*
$pp \rightarrow jjZZ$	*	*	*	*	*	*		*		
$pp \to W^{\pm}W^{\mp}$	*			*	*	*		*	*	
$pp \rightarrow ZZ$				*	*	*		*		
$pp \to ZW^\pm$	*			*	*	*				
$pp \rightarrow jjH$		*	*	*	*	*		*		
$pp \rightarrow ZH$		*	*	*	*	*		*		

Operators correlation in electroweak scattering


- In single channel, contribution from different operators may cancel with each other.
- Large deviation in VBS[WW] will uniquely determine Wilson coefficients value and correlated structure.
- No deviation in future measurements, Wilson coefficients will be constrained in a very small region.

Operators correlation in electroweak scattering

- Precise measurement of vector boson fusion (VBF[h]) is important to probe the direction of new physics.
- Since there are strict constraints in two projection plane of operator correlation, any deviation in electroweak scattering will determine all relevant Wilson coefficients.

Correlation and consistency of SMEFT

• If RGE of these operators are insensitive, such Wilson coefficients are useful to look for the direction of new physics.

Correlation and consistency of SMEFT

VBS[WW]:	$C_{\varphi W} \sigma_{\varphi W}^{\rm VBS} + C_{\varphi WB} \sigma_{\varphi WB}^{\rm VBS} = 0$
ZW - production:	$+ C_{\varphi WB} \sigma_{\varphi WB}^{ZW} = 0$
VBF[h]:	$C_{\varphi W} \sigma_{\varphi W}^{\rm VBF} + C_{\varphi WB} \sigma_{\varphi WB}^{\rm VBF} = 5\Delta\sigma$

- When contribution from Q_W can be excluded by precise measurement in high energy tails of di-jet invariant mass in VBS, an over-constrained system appear.
- Precise measurement in electroweak scattering is important to check the consistency of SMEFT.

No deviation in ZW production: modification between VBS[WW] and VBF will be set as a <u>fixed ratio</u>.

deviation in observables

Non-trivial enhancement of suppressed operators.

Jian-Nan Ding

Operator Correlation in Electroweak Scattering at LHC

• Operator correlation might be important in searching for new physics in a 'bottomup' framework.

 Precise measurement of electroweak scattering is important to check the consistency of SEMFT and probe new physics.

Thanks for your attention !