

Search for a new heavy boson W' decaying to a top and a bottom quark with the ATLAS detector

Rui Yuan Shandong University, Michigan State University

CLHCP2021, 25 - 28 November

Outline

- Introduction
- $W' \rightarrow tb \rightarrow qqbb$ channel
- $W' \rightarrow tb \rightarrow l\nu bb$ channel
- Latest Result

Introduction

W' appears in several BSM scenarios: Extra dimensions, strong dynamics or composite Higgs. Some with preferential 3rd generation couplings

Benchmark Model

- SSM-like with free mass, coupling to 3rd generation and width
- Two possible Chiralities. Right handed or Left-handed W'
- Assumption: RH Neutrino mass > Mass of W'

General Information

٠

٠

- Two channels are studied separately, combined at the end
 - OL: public (<u>CONF note</u>)
 - 1L: work in progress
- Final states:
 - OL: 1 top-quark (AntiKt10 jet) and 1 b-quark (AntiKt4 jet)
 - 1L: 2 b-quark (AntiKt4 jet), 1 lepton and 1 neutrino (E_T^{miss})
- Reconstruct mass of tb
- MC + Data-driven estimated background
- Profile-likelihood fit on the m_{tb} spectrum

$W' \rightarrow tb$: Signal

• Signal: pp -> w' -> tb

$$\mathcal{L} = \frac{V'_{ij}}{2\sqrt{2}} \bar{f_i} \gamma_\mu \left(g'^R_{i,j} (1 + \gamma^5) + g'^L_{i,j} (1 - \gamma^5) \right) W'^\mu f_j + h.c.$$

h_tb_mass

- Generated with Madgraph + Pythia at LO
- Scaled to NLO using ZTOP: Phys.Rev.D86 (2012) 075018, arXiv: 1208.4858
- RH W' with 3.5% relative Width

- Boosted hadronically decaying top-quark -> one large-R jet (AntiKt10) as top-candidate top-candidate \bar{d} or \bar{s} u or o large-R jet b-quark from W' $d \text{ or } \bar{s}$ -> small-R jet (AntiKt4) as b-candidate W Categorization based on top-tagging and b-tagging top-tagging: large-R jets identified as coming from a top-quark b-candidate b-tagging: small-R jets identified u or c as coming from b-quark small-R jet b Both are DNN based Backgound: MC ttbar •
 - Data-driven QCD multi-jet

W' ightarrow tb ightarrow qqbb: Event selection

- 2 categories: 0 or 1+ b-tagged small-R jet inside the top-candidate
- Signal/template region: pass 80% WP top-tag
 - top-candidate pass (fail) 50% WP top-tag
 -> SR1/SR3 (SR2/VR)
- ABCD-like categorization:
 - B-tagging score: 85WP
 - top-tagging DNN score: $50/80/e^{-4}/e^{-7}$

$W' \rightarrow tb \rightarrow qqbb$: Background estimation

- CRa: nominal data-driven estimation
- Subtract ttbar from data in TR
- SR1 = TR1*(CR1/CR2), bin-by-bin
- Systematic: |(CR1a/CR2a)/(CR1b/CR2b)-1|

- Final states: leptons (el or mu), MET and small-R jets (2 or more)
- Reconstructed m_{tb}: lep + MET -> W boson, W boson + b-jet -> top, top + b-jet -> W'
- Template fit (Multijet) + MC (anything else) for background estimation
- Profile-likelihood fit on the m_{tb} spectrum in 4 signal regions and 2 control regions

Reconstruction

- Neutrino reconstruction algorithm using m_w (80.4 GeV) and the missing energy
- W reconstruction: Single lepton + neutrino
- Top reconstruction: jet that provides the closest $m_{top} = 172.5 \text{ GeV} \rightarrow b_{top}$
- W' reconstruction: Remaining jet with highest $P_T \rightarrow b_{W'}$

Alternative method

- Consider the neutrino momentum should satisfy both of the W boson and top reconstruction at same time
- Solution should be a group of points (if exist) on the intersection of these two ellipsoids described by the equations
- Choose the point closest to the MET and the projection of the ellipse onto the transverse plane, define the distance as D_v
- Choose the jet with smallest D_{ν} as b-candidate
- Better resolution, but less events, hurt the significance, especially at high mass region

- Exactly 2/3 jets, exactly 1/2 b-tagged in those jets
- Angular cut keep SR/VR/CR orthogonal
- Additional cut in SR
 - Based on b-tagging
 - In the 2-jet 1-b region: b_{top} is b-tagged
 - In the 3-jet 1-b region and 3-jet 2-b regions: J_3 is not b-tagged
 - Based on top-tagging
 - Simple top tagging based on the mass of re-clustered jets from small-R jets
 - Remove events with an hadronic toptagged jet

Region	SR	VR _{wjets}	CR _{w jet s}
Trigger	E_T^{miss} OR one-lepton		
Njets	= 2, = 3		
Nbjets	= 1, = 2 = 1		
p_T^{lep}		>50GeV	
E_T^{miss}	>100GeV		
m_T^W (in 1-tag)	>20GeV		
$p_T^{b_{W'}}$	>200GeV		
p_T^{top}	>200GeV		
m _{tb}		>400GeV	
$\Delta \eta(t, b_{W'})$	<2.0		
$\Delta R(l, b_{top})$	<1.0	>1.0, <=2.0	>2.0

$W' \rightarrow tb \rightarrow l \nu bb$: Multijet estimation

- MC for ttbar/Wjets/single-top/diboson/Zjets
- m_T^W and m_{tb} distribution from loose-not-tight regions (same selection otherwise), multijet_template = Data MC
- Fit m_T^W with normal MC and Data (tight), get initial norm_SF for multijet
- Implement the norm_SF on m_{tb} distribution. And include in the final fit
- Multijet small in all regions

$W' \rightarrow tb \rightarrow qqbb$: result

$W' \rightarrow tb \rightarrow l \nu bb$: Expected result

- Present the studies of the heavy boson W' decaying to a top and a bottom quark
- Large improvement from $36.1 fb^{-1}$ results
- Observed limit mass excluded up to 4.4 TeV in 0L channel, right-handed
- Expected limit mass excluded up to 4.2 (3.85) TeV in OL (1L) channel, right handed

Backup

Neutrino Rec comparison

CMS result

