Triple GEM Detector for the GE2/1 Upgrade of the CMS Muon System

Aera JUNG, Yong BAN, Chuqiao JIANG, Hongji MA, Dayong WANG

- school of physics, Peking University (PKU), China

The 7th China LHC Physics Workshop Nov. 25-28, 2021 (https://indico.ihep.ac.cn/event/14560/) online

O1 CMS muon spectrometer

- CMS muon chambers must detect the traversing track at several points along the track path to measure the deflection of muons as they pass through the chamber's magnet field.
- Phase-II upgrade
 - Improved RPC
 - Gas Electron Multiplier (GEM) GE1/1 and GE2/1 ME0: forward muon tagger

Diagram of one quadrant of the CMS detector: future muon system

- The foil (e.g. 50 μ m thick kapton) is metalized on both sides (e.g. 5 μ m copper) and has a pattern of holes (e.g. 70 μ m with a 140 μ m pitch).
- Gas mixture: 70% Ar + 30% CO₂
- Spatial resolution $\approx 300 \ \mu m$
- Time resolution ≈ 10 ns

 CMS Technical Design Report for the Muon Endcap GEM Upgrade, CERN-LHCC-2015-012
Fabio Sauli, The gas electron multiplier (GEM): Operating principlesand applications, Nuclear Instruments and Methods in Physics Research A 805 (2016) 2-24

- PKU is responsible for the design, prototyping, and mass-production of 8 types of GE2/1 GEBs. Our prototypes test results showed excellent performance across all requirements
- To achieve maximum coverage, modules in the front and back chambers will be staggered
- As a consequence, eight different types of modules are needed for GE2/1 production

01 Birth projec	Schedule of GE1/1 ct			negative endcap installed	
2009		Oct. 2017	Dec. 2018	Jul-Oct. 2019	Jun. 2020
	GE1/1 R&D	mass pro	duction s	uperchamber	production
positive endcap installed			GE1/1 first runs with collision		
Jul-S 202	Sept. 20	Apr. 2021	Oct. 27 2021	Feb. 2022	
	con	nmissioning			

mass production for GE2/1 M1-M4

mass production for M5-M8

country	Module type	Number of module	comments
Italy	M6 + M8	38 (M6) + 38 (M8)	
Belgium	M1 + M3	19 (M1) + 38 (M3)	
Germany	M1		QC only (no assembly)
India	M2	38 (M2)	
Pakistan	M7	38 (M7)	
Sri-Lanka (new)	M1 + M4	19 (M1) + 38 (M4)	The Sri-Lanka group will work at CERN
China (new)	M5	38 (M5)	Second part of QC5 done at CERN by Chinese groups

• With PKU, Tsinghua University, Beihang University and Sun Yetsen University

CERN

Production

sites

(e.g. PKU)

QC 1: material inspection

QC 2: GEM foils test (fast + long)

QC 2: GEM foils test (fast)

Assembly preparation + Assembly

QC 3: gas leak test

QC 4: HV test

QC 5: gas gain calibration (gain + uniformity)

QC 6: HV stability test

QC 7: electronics connectivity test

QC 8: cosmic ray test

CERN cleanroom

QC2 and assembly at CERN

01 QC3, QC4 and QC5: lab

QC5 OC3 and QC4 cleanroom Image: Comparison of the comparison o

PKU lab 01 QC3

- QC3: gas leakage test
- Pressurize with pure CO2 to 25 mbar above atmospheric pressure
- Leakage should cause pressure drop of less than 7mbar/h
- A proper gas seal is needed so the detector can run in the CMS experiment without affecting other detectors and with a minimal amount of gas leakage

01 **QC4**

- QC4: acquire the noise rate on the characteristic I-V curve of the detector from 200V to 4900V
- Pure CO₂
- should not exceed $\sim 10 \text{ Hz}$

Results (CERN)

module name: GE21-MODULE-M1-0002

Results (PKU)

200

400

600

current [µA]

rate on Apr. 22, 2020

1000

QC5: effective gas gain test with X-ray (stage1 at PKU)

- full detector response uniformity test using the Scalable Readout System (SRS) together with the front-end chip (stage2 at CERN by Chinese people)
- Gas: Ar 70% / CO2 30%

Results for gain(CERN) module name: GE21-MODULE-M1-0002

Results for gain (PKU) module name: GE1/1 VII-L-CERN-003

01

- The **Triple GEM technology was adopted** for the Phase-II upgrade of part of the CMS forward muon system to accommodate the high trigger rate and to improve the muon track reconstruction performance.
- The mass production of the GE2/1 GEM chambers is ongoing and installation will be in the winter of 2023-2024.
- PKU has completed all assembly and test (QC2 QC5) hardware and software platforms, validated as one of the official CMS-GEM production sites, the production of ~40 GE2/1 M5 GEM chambers will start in early 2022.
- PKU has also completed the design and prototyping of the 8 different GE2/1 GEBs (M1-M8). The mass **production (~320 sets) has started** and will be shipped to CERN upon completion.

GE2/1 integration and pre-installation

