

汇报人:郝嘉俊 2021年11月26日

高纯锗探测器

Water

LEGNED-1000实验概念图

低本底物理实验

□ 暗物质直接探测:信号幅度小,噪声要求较高(~10 eV)

□ 无中微子双β衰变: ⁷⁶Ge衰变信号能量2.039 MeV, 大动态范围

CDEX未来将同时对暗物质与无中微子双β衰变能区进行观测

传统低噪声前放

传统大动态范围前放

GERDA

- □ 全低温(液氩直冷)、JFET输入管、阻容反馈
- **ENC ~230 e**⁻

Majorana

- □ 部分低温(冷指制冷)、JFET输入管、
- □ 阻容反馈(非晶锗溅射、~10GΩ @90 K)

ENC ~33 e⁻

提前复位脉冲反馈

□ 提前复位

- □ 增加提前复位阈值
- □ 死时间减小至复位时间~0.5 µs

□ 提前复位周期 ~0.5 s(探测器漏电流1 pA)

前放电路结构

□ 两级放大器, 双通道输出

- □ 高增益通道:~100 eV-150 keV, 250 mV/fC
- □低增益通道: 10 MeV, 2.5 mV/fC

DR >100000 : 1

- □ 输入端外部电容
 - □ 高纯锗探测器: 0.5 kg, 直径、高度为50 mm, 电极直径为3 mm
 □ C_d≈1.1pF, C_{in}≈2pF
- □ 输入MOS管优化
 - □ 沟道电流: 2 mA
 - □ 尺寸: 2.4 mm/0.3 μm

提前复位仿真

□ 信号处理时间~40 μs > τ_{opt}(~10 μs)

版图

□ 面积:~3×3 mm²

□ 高增益通道输出波形

□ 高增益输出信号上升时间:~110 ns

□ 高增益档输出幅度/第一级放大器输出幅度放大: 96.5

□ 低增益通道输出波形

□低增益输出信号上升时间:~25 ns

□低增益通道增益: 2.1 mV/fC

□ 噪声测量

□ 提前复位验证

□ 复位间隔时间~36 μs

□ 主放输出幅度不受到复位影响

□ 提前复位验证

□ 注入漏电流 ~1.7 pA

□复位电平1.98 V;"提前复位"阈值0.48 V;下阈值0.25 V

"提前复位"与传统脉冲复位对比 ඛ 输入信号电荷量~50 fC

"提前复位"与传统脉冲复位对比 □输入信号电荷量~100 fC

总结

日针对高纯锗探测器,设计了一款双增益通道的大动态范围前

放,用于同时观测暗物质直接探测和无中微子双β衰变实验的 关注能区;

提出了"提前复位"机制,既避免反馈电阻引入的噪声,同时死时间很小。通过计数率实验验证了有效性; 测试了大动态范围前放在液氮77K低温下的瞬态响应和噪声

性能。

