

A 2-D clustering algorithm for data reconstruction in vertex detector of ILC

R. ZHAO; A. BESSON; C. HU-GUO; Y. HU

全国辐射探测微电子学交流 (NME'2021)

研究背景

CMOS像素探测器将传感器和读出电路集成在同一块衬底,在大型高能物理实验设备中已经得到了应用,包括STAR实验和ALICE实验

ILC中存在大量来自背景的命中,由于这些带电粒子具 有较小动量(10~100MeV/C),在探测器表面形成具 有细长形状的簇(elongated cluster)。 工艺的快速进步使得集成更多功能的CMOS像素探测器

成为可能。我们提出集成片上人工神经网络的CPS。

研究背景

前期的可行性验证主要在FPGA中完成,包括簇找寻 (clustering)模块、主成份分析(PCA)模块、人工神 经网络(ANN)模块。FPGA实现的测试结果与TMVA 软件重建结果一致,基本符合入射角度的变化规律。

"FPGA Implementation of an Artificial Neural Network for Subatomic Physics Experiment Particles Recognition." *TWEPP2018* 11/26/2021 NME²2021 R.ZHAO

传统簇找寻算法

FPGA中实现的簇找寻模块(clustering)基于传统的相邻像素的搜索算法。

clustering algorithm A:

1.找寻种子像素; 2.搜索种子像素的8个相邻像素中的激活像素; 3.以相邻像素为中心, 重复搜索其8个

相邻像素, 直到其相邻像素中无激活像素。

clustering algorithm B:

FPGA中实现的找寻算法额外增加了7×7的簇尺寸限制(根据数据采集的最大入射角度确定)

传统簇找寻算法时序

传统算法在时序中存在不确定

clustering algorithm A:

 扎寻每个cluster时间不确定(取决于cluster尺寸)
 扎寻一帧中所有的cluster时间不确定(取决于 cluster数量)

clustering algorithm B:

 扎寻每个cluster时间基本一致(7×7个时钟周期)
 扎寻一帧中所有的cluster时间不确定(取决于 cluster数量)

传统簇找寻算法面临挑战

- 1. 资源需求较大:存储整个一帧原始数据完成簇的找寻
- 2. 时序复杂,不利于实时处理。
- 3. 特殊簇处理存在问题:包括较大簇以及重叠簇
- 团队提出一种能够片上集成的面向列级ADC的实时簇找寻算法

("A 2-D Clustering Algorithm for Data Reconstruction in Vertex Detector of ILC," doi:10.1109/TNS.2021.3115146.) 。

2-D clustering algorithm

(b) 在fired registers中选择激活像素;

(c) k-1, k, 和k+2列的最大值寄存器被更新;

(d) k-1 和k+2列目标寄存器分别捕获到列种子像素(在一列7个像素中具有最大值)

(e) k列目标寄存器捕获到一个种子像素, k+1列目标寄存器捕获到一个列种子像素. 从 k-3到k+3 列的移

位寄存器中的激活像素组成了一个簇。

11/26/2021

NME²⁰²¹ R.ZHAO

提出算法的时序

(a) 像素值逐行读入处理 (基于列级ADC) (b)种子像素从读入到识别 读出需要7个延时(取决于 窗口尺寸) (c) 位于第k列 第n+3行的 种子像素被检测并读出。 移位寄存器从第k-3到 k+3 列的像素组成一个7×7簇。

数据采集系统

(a)

(b)

(a) 采集不同入射角度下的簇信息,共计九个入射角度(θ_{inc} = 0°, 15°, 30°, 44°, 56°, 62°, 64°, 71°, 和 73°)
(b) MIMOSA-18专门为高能物理实验设计的CMOS像素探测器。采用AMS 0.35 mm OPTO 工艺制造,芯片 厚度50 μm,其中外延层14 μm,电阻率10-15 Ω·cm。

(c) 分辨率为256×256 像素, pitch=10 µm., 经过相关双采样后数据为12bit。

算法计数比较

特殊簇的处理

	Г — - 						1	
10	9	15	14	14	10	7		
31	36	43	45	80	71	25	7	
20	20	32	85	246	239	77	34	20
	9	9	29	85	92	69	67	56
				11	18	13	17	22
	 							7
0	1	2	3	4	5	6	7	8

出现在入射角度=71°时的具有大尺寸的簇:

clustering algorithm A: 三个种子像素, 分别位于第4
列 (246 ADU), 第0列(31 ADU),和第 8列 (56 ADU);
clustering algorithm B: 位于第4列的1个种子像素;
2-D clustering algorithm: 位于第4列的1个种子像素。

	1	+					⊢ — ¬	₁ — —	— — -	\vdash	— — -				
	Ļį			0				i							
					7	10	6	8	6	11	27	17			
		58	67	66	48	59	57	73	72	50	127	42	10		
		13	39	70	43	39	44	43	47	75	130	39	6		
			7	8		8		8	8	7					
	i L						 	i L						 l	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
出现在入射角度=71°时的具有重叠部分的簇:															
clustering algorithm A:两个种子像素,位于第10列的															
种子像素(130 ADU)以及位于第 3列 (70 ADU);															
clustering algorithm B: 位于第10列的1个种子像素;															
2-D clustering algorithm:两个种子像素,位于第10列															
(130 ADU) 以及位于第 3列 (70 ADU)。															

不同窗口比较

提出算法的单元结构

提出算法的阵列结构

算法的实现基于2^N列的模块。两个32列的模块(N=5)。 第一级包含32个找寻模块.。 第二级包含7个32-1多路选择模块。

算法实现的计数结果仿真

算法实现的功耗及面积分析(部分)

Window	Multiplexer	ADC(bits)	Clock(MHz)	Column height(µm)	Column power(mW)
7×7	16-1	8	100	200.58	0.85
		8	200	200.15	1.83
		4	100	102.86	0.46
		4	200	103.39	0.88
7×7	32-1	8	100	197.81	0.86
		8	200	197.24	1.77
		4	100	101.08	0.43
		4	200	102.24	0.88
5×5		8	100	159.39	0.68
	32-1	8	200	159.2	1.45
		4	100	81.56	0.37
		4	200	82.92	0.71

采用Tower-Jazz 0.18 µm CMOS工艺综合的面积和功耗结果

基于像素级ADC的簇找寻算法

NME²⁰²¹ R.ZHAO