

Search for invisible decays at BESIII

Yunxuan Song

Peking University

University of Chinese Academy of Sciences

1

Why invisible decays

- → Understanding DM is one of the highly topical subjects in both astronomy and particle physics.
- → Many evidences for the existence of DM are observe in astronomy. There is no evidence in collider experiments.
- → DM, one of compelling reasons to NP.

- → Search for invisible decays at colliders is one way to search for DM.
- → This talk focuses on recent search for invisible decays at BESIII.

Searches for invisible decays at BESIII

- → Search for η and η' invisible decays in $J/\psi \rightarrow \phi \eta$ and $J/\psi \rightarrow \phi \eta'$.
 - Phys. Rev. D 87, 012009 (2013)
- → Search for invisible decays of $V(\omega, \phi)$ in $J/\psi \to V\eta$.
 - Phys. Rev. D 98, 032001 (2018)
- → Search for $J/\psi \rightarrow \gamma$ + invisible.
 - Phys. Rev. D 101, 112005 (2020)
- → Search for $\Lambda \rightarrow \text{invisible}$ in $J/\psi \rightarrow \Lambda \overline{\Lambda}$
 - arXiv: 2110.06759

Search for η and η' invisible decays

- $\rightarrow \eta/\eta'$ decay play special role in low energy scale QCD theory.
- → Invisible and radiative decays offer a window for NP beyond SM.
- → 225M J/ψ sample, large branching fraction of $J/\psi \rightarrow \phi \eta^{(')}$ and narrow intermediate meson widths provide clean, large η/η' sample.

- → Get the ratio of $\eta^{(')}$ → invisible decay relative to the $\eta^{(')} \rightarrow \gamma \gamma$. $\frac{Br(\eta(\eta') \rightarrow invisible)}{Br(\eta(\eta') \rightarrow \gamma \gamma)}$
- → Many uncertainties will be canceled.

Search for η and η' invisible decays

- → Reconstruct K^+K^- to tag ϕ firstly, then search for signal.
- → No charged tracks besides those of the $\phi \to K^+K^-$.
- → N_{shower} are required to be zero inside a cone of 1.0 rad around the recoil direction against the ϕ candidate.
- → $|\cos \theta_{\text{recoil}} < 0.7|$ to ensure the $\eta^{(')}$ decay particles are inside the fiducial volume of the detector.

Search for η and η' invisible decays

→ Reconstruct
$$\eta^{(')} \rightarrow \gamma \gamma$$
 and $\phi \rightarrow K^+ K^-$.

Search for ω and ϕ invisible decays

- → 1.3B J/ψ sample, large branching fraction of $J/\psi \rightarrow \phi \eta$ and narrow intermediate meson widths provide clean, large ω/ϕ sample.
- → Constrain the masses of the LDM particles and the coupling of a U boson to the light quark.

→ Get the ratio of BF of the invisible decay to the visible decay:

$$\frac{\mathcal{B}(V \to \text{invisible})}{\mathcal{B}(V \to \text{visible})} = \frac{N_{\text{sig}}^{\text{invisible}} \cdot \epsilon^{\text{visible}}}{N_{\text{sig}}^{\text{visible}} \cdot \epsilon^{\text{invisible}}},$$

Search for ω and ϕ invisible decays

→ Reconstruct
$$J/\psi \rightarrow V\eta$$
, $\eta \rightarrow \pi^+\pi^-\pi^0$.

→ $|\cos \theta_{\text{recoil}} < 0.7|$ to ensure the $V(\phi, \omega)$ decay particles are inside the fiducial volume of the detector.

→ $E_{\gamma}^{\text{Extra}} < 0.2 \text{ GeV}$, where $E_{\gamma}^{\text{Extra}}$ is the sum of energies of the extra photons.

Search for ω and ϕ invisible decays

- → No obvious signal for ω and ϕ invisible decays is observed.
- → The UL is estimated with Bayesian approach.

★
$$\frac{\mathscr{B}(\omega \to \text{invisible})}{\mathscr{B}(\omega \to \pi^{+}\pi^{-}\pi^{0})} < 8.1 \times 10^{-5} \text{ at the 90% C.L.}$$

★
$$\frac{\mathscr{B}(\phi \to \text{invisible})}{\mathscr{B}(\phi \to K^{+}K^{-})} < 3.4 \times 10^{-4} \text{ at the 90% C.L.}$$

- ★ $\mathscr{B}(\omega \rightarrow \text{invisible}) < 7.3 \times 10^{-5}$ at the 90% C.L.
- ★ $\mathscr{B}(\phi \rightarrow \text{invisible}) < 1.7 \times 10^{-4}$ at the 90% C.L.

→ A series of supersymmetric Standard Models, including Next-to-Minimal Supersymmetric Model, predict a CP-odd pseudoscalar Higgs (A⁰). The A⁰ can be produced in quarkonium rediative decay:

$$\ast \quad \frac{\mathscr{B}(V \to \gamma A^0)}{\mathscr{B}(V \to \gamma \mu \mu)} = \frac{G_F m_q^2 g_q^2 C_{QCD}}{\sqrt{2\pi\alpha}} (1 - \frac{m_{A^2}^2}{m_V^2})$$

* A^0 can decay to two neutralinos, $g_c = \cos \theta_A / \tan \beta$, $g_b = \cos \theta_A / \tan \beta$.

- → Using $\psi' \to \pi^+ \pi^- J/\psi$ to get J/ψ sample.
 - The $\pi^+\pi^-$ provide excellent trigger.
 - Large BR (34.68%)
- → Reconstruct $\pi^+\pi^-$ to tag J/ψ firstly, then search for signal.

→ Fit to the recoil mass of $\pi^+\pi^-$, get 8.848 × 10⁷ J/ ψ from 4.481 × 10⁸ ψ' data set.

- → Based on tagger J/ψ sample, search for $J/\psi \rightarrow \gamma$ + invisible.
 - Only $\pi^+\pi^-$ and one good shower (signal shower) in detector.
 - Signal shower and recoiled invisible must direct to the barrel region.
- → Huge background from $J/\psi \rightarrow n\overline{n}, J/\psi \rightarrow \gamma n\overline{n}, J/\psi \rightarrow \gamma K_L^0 K_L^0$
- → Separate γ from n, \overline{n}, K_L^0 with shower shape. However, n, \overline{n}, K_L^0 induced shower didn't simulate well.
- → Control Sample

 - $n/\overline{n}: J/\psi \to p\pi n/\overline{n}$
 - $\bigstar \quad K_L^0: J/\psi \to K\pi K_L^0 \& J/\psi \to \pi\pi\phi, \phi \to K_S^0 K_L^0$

→ Correct the shower energy and efficiency of n, \overline{n}, K_L^0 momentum dependently.

- → Search signal on $E(\gamma)$ in J/ψ rest frame in [1.25, 1.65] GeV.
- → Un-binned fit to extract signal.
- → Signal: signal MC shape.
- → Two peak bkg: fixed Crystal Ball, determined by fits on exclusive MC sample.
- → Non-peak bkg: exponential function.
- → Scan m(invisible) from $0 \sim 1.2 \text{GeV/c}^2$
- → No significant signal found. Max significant is 1.15σ .

- → Use the modified frequentist method to calculate upper limits.
- → \sim 6.2 better than CLEO-c.
- → Calculate UL for β and θ_A .
 - $\stackrel{\mathscr{B}(V \to \gamma A^0)}{\mathscr{B}(V \to \gamma \mu \mu)} = \frac{G_F m_q^2 g_q^2 C_{QCD}}{\sqrt{2\pi\alpha}} (1 \frac{m_{A^2}^2}{m_V^2})$

* A^0 can decay to two neutralinos, $g_c = \cos \theta_A / \tan \beta$, $g_b = \cos \theta_A / \tan \beta$.

×10⁻⁶ **BF UL @ 90% CL** 2.5 Observed limits Expected limits Expected limits ± 1o Expected limits ± 20 2 1.5 0.5 0.2 0.6 0.8 0.4 1.2 $m_{invisible}$ (GeV/c²)

Search for $\Lambda \rightarrow invisible$

→ τ(n) measured by beam method and storage method are different.

- → The discrepancy can be explained by requiring 1% of the neutron decays into dark matter.
- → Some models predict baryon invisible decays

Phys. Lett. B 745 (2015), 79 Phys. Rev. Lett. 111, 222501 (2013)

→ No experimental search for baryon invisible decays until now.

BESIII New Physics Workshop @ Hengyang Oct.2018 New Physics in Charm Physics Fu-Sheng Yu

Neuton Lifetime

Yunxuan Song

Search for $\Lambda \rightarrow$ invisible

- → Using $J/\psi \to \Lambda \overline{\Lambda}$ to get Λ sample. $\mathcal{B}(\Lambda \to \text{invisible}) = \frac{N_{\text{sig}}}{N_{\text{tag}} \cdot (\varepsilon_{\text{sig}}/\varepsilon_{\text{tag}})}$
- → Perform semi-blind procedure.
- → Search for signal on total energy in EMC.
- → Reconstruct $\overline{p}\pi^+$
 - Requiring TOF hit from charged tracks, to guarantee all showers are related to the event.
- → Fit to the rec. mass of $\overline{p}\pi^+$, get 4.15 × 10⁶ Λ.

Search for $\Lambda \rightarrow \text{invisible}$

- \rightarrow Based on tagged Λ sample, no extra charger tracks are required.
- → Search for signal on total energy in EMC(E_{EMC}).
- → Main bkg is $\Lambda \to n\pi^0$. $E_{EMC} = E_{EMC}^{\pi^0} + E_{EMC}^n + E_{EMC}^{noise}$.
- → Geant4 don't simulate *n* in EMC well. (Data Driven)
 - With control sample $J/\psi \to \Lambda(n\pi^0)\overline{\Lambda}(\overline{p}\pi^+)$, get precise $E_{EMC}^n + E_{EMC}^{noise}$.
 - * $E_{EMC}^{\pi^0}$ get from MC simulation.

Search for $\Lambda \rightarrow \text{invisible}$

- → Data consistent with MC well. No obvious signal.
- → Use the modified frequentist method to calculate upper limits.
- → $\mathscr{B}(\Lambda \rightarrow \text{invisible}) < 7.4 \times 10^{-5}$ with 10B J/ψ data.
- → First search for baryon invisible decay.

Summary

- → We review several searches about invisible decays.
- → Large data sample, large BF, narrow intermediate hadron widths provide excellent opportunity to search for invisible decays at BESIII.
- → More huge data in BESIII. Many ongoing invisible searches. More exciting results in future.

Thank you!