

BESIII NPG Workshop 2021

FCNC searches at BESIII

Dong Xiao¹

2021.11.05

¹Lanzhou University

Introduction

Experiment

Prospect

Summary

Introduction

• Standard Model (SM):

The Standard Model

1964, Nicola Cabibbo

 $\bar{u}u + \bar{d}'d' = \bar{u}u + (\cos^2\theta_c \,\bar{d}d + \sin^2\theta_c \,\bar{s}s)$ $+ \sin\theta_c \cos\theta_c (\bar{d}s + \bar{s}d)$

1970, S.Glashow, J.Iliopoulos, L.Maiani

$$\bar{u}u + \bar{c}c + \bar{d}'d' + \bar{s}'s' = \bar{u}u + \bar{c}c + \bar{d}d + \bar{s}s$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Dong Xiao (LZU)

Dong Xiao (LZU)

• Flavor-changing neutral current (FCNC) process:

 $\mathcal{A}_x \propto \left(V_{ts} V_{td}^{\star} + V_{cs} V_{cd}^{\star} + V_{us} V_{ud}^{\star} \right),$

$V_{ud}^{\star}V_{us} + V_{cd}^{\star}V_{cs} + V_{td}^{\star}V_{ts} = 0,$
$V_{ud}^{\star}V_{ub} + V_{cd}^{\star}V_{cb} + V_{td}^{\star}V_{tb} = 0,$
$V_{us}^{\star}V_{ud} + V_{cs}^{\star}V_{cd} + V_{ts}^{\star}V_{td} = 0,$
$V_{us}^{\star}V_{ub} + V_{cs}^{\star}V_{cb} + V_{ts}^{\star}V_{tb} = 0,$
$V_{ub}^{\star}V_{ud} + V_{cb}^{\star}V_{cd} + V_{tb}^{\star}V_{td} = 0,$
$V_{ub}^{\star}V_{us} + V_{cb}^{\star}V_{cs} + V_{tb}^{\star}V_{ts} = 0.$

$$\mathcal{A}_{y} \propto \left(V_{ts} V_{td}^{\star} G(m_{t}) + V_{cs} V_{cd}^{\star} G(m_{c}) + V_{us} V_{ud}^{\star} G(m_{u}) \right),$$
$$\mathcal{A}_{y} \sim V_{ts} V_{td}^{\star} G(m_{t}) \sim V_{ts} V_{td}^{\star} F\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right)$$

Introduction

Experiment

Prospect

Summary

Type of FCNC process

Dong Xiao (LZU)

BESI

• Features of FCNC:

Very small Branching fraction:

- 10⁻¹³~10⁻¹⁰ in theoretical prediction in SM.
- Enhanced to above 10⁻⁶ in other model, e.g. MSSM, 2HDM.

Hard to fully reconstruct:

- Contains at least a γ (no tracks, fake γ , FSR).
- Contains l^+l^- pairs (identification of l).
- Contains $v_l \overline{v_l}$ pairs (invisible).

Confusable background:

- γ conversion ($\gamma \rightarrow e^+e^-$).
- Long-distance process (through vector particle).

R(-SIII

4 FCNC out of 369 papers!

• $J/\psi, \psi(3686) \rightarrow D^0 e^+ e^-$: PRD 96, 111101(R) (2017)

• $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} e^+ e^-$: PRD 97, 091102(R) (2018)

• $D^+(D^0) \rightarrow h(h')e^+e^-$: PRD 97, 072015 (2018)

• $D^0 \rightarrow \gamma \gamma$: PRD 91, 112015 (2015)

ESI Techniques in FCNC research

Techniques in FCNC research:

Blind analysis ALEPH D(* 1.085±0.059±0.018 1.27^{+0.23}+0.03 -0.19 -0.02 ALEPH exclusive 1.093±0.066±0.028 CDF J/W k (92-95 Prel. 1.110±0.056^{+0.033} _0.030 CDF D⁽⁾ 1.00^{+0.17}_{-0.15}±0.10 DELPHI D 1.06^{+0.13}_{-0.11}±0.10 DELPHI topology (91-93 DELPHI topology (94-95 Prel.) 1.045±0.019±0.024 1.09±0.07±0.03 L3 Topolog **OPAL** topolo 1.079±0.064±0.041 0.99±0.14^{+0.05} OPAL D (91-9)1.03^{+0.16}_{-0.14}±0.09 SLD vert. + 1.037^{+0.025}_{-0.024} ±0.024 SLD topol **BABAR** exclusive 1.082±0.026±0.012 (99-01) **BELLE exclusive** 1.091±0.023±0.014 Average 1.073±0.014 0.8 1 1.2 1.4 0.6

B Lifetime Working Group July 2002

Figure 2: Summary of B meson lifetime ratio measurements. The average has a $\chi^2 = 4.5$ for 13 degrees of freedom.

 $\tau (\mathbf{B})/\tau (\mathbf{B}^0)$

"Blind Analysis in Particle Physics"

Efficiency Background Sensitivity Result

Cut Value

Hide results to seek the truth

More fields should, like particle physics, adopt blind analysis to thwart bias, urge Robert MacCoun and Saul Perlmutter.

Nature volume 526, pages187-189 (2015)

Dong Xiao (LZU)

FCNC searches at BESIII

Single-tag/Double-tag: $N_i^{\rm sig} = 2N_{D^+D^-} \cdot \mathcal{B}_i^{\rm tag} \cdot \mathcal{B}_i^{\rm sig} \cdot \varepsilon^{\rm sig} \cdot \varepsilon_i^{\rm tag}$

Techniques in FCNC research:

- Single
- Double-tag -> smaller sample, lower background

$$e^ e^+$$

 $D^-, \overline{D}^0, \overline{\Lambda}_c^ e^+$

EFSII Techniques in FCNC research

$$\mathcal{B}^{\rm sig} = \frac{\sum_i N_i^{\rm sig} / \varepsilon^{\rm sig}}{\sum_i N_i^{\rm tag}}$$

$$N_i^{\text{tag}} = 2N_{D^+D^-} \cdot \mathcal{B}_i^{\text{tag}} \cdot \varepsilon_i^{\text{tag}}$$

Dong Xiao (LZU)

ESI Techniques in FCNC research

- Techniques in FCNC research:
 - γ conversion veto:
 - Occurs when γ through matter.
 (Beam pipe and inner wall of MDC)
 - Veto through vertex fit of e^+e^- .

Normalized likelihood value

0.8

0.6

0.4

0.2

0

0

5

10

15

LISE OF AIL 1

20

25

ESI Techniques in FCNC research

- Techniques in FCNC research:
 - Calculate upper limits:
 - Likelihood scan.

• TRolke package.

TRolke Class Reference

This class computes confidence intervals for the rate of a Poisson process in the presence of uncertain background and/or efficiency.

The treatment and the resulting limits are fully frequentist. The limit calculations make use of the profile likelihood method.

Author

Dong Xiao (LZU)

Math » Physics Vectors

Jan Conrad (CERN) 2004, Updated: Johan Lundberg (CERN) 2009

For a full list of methods and their syntax, and build instructions, consult the header file TRolke.h

2

3

Δ

Normalized likelihood value

0.8

0.6

0.4

0.2

0

0

Search for $D^0 \rightarrow \gamma \gamma$

[Hajime Muramatsu, Xianghu Zhao and Daniel Ambrose et al.]

- Theoretical prediction:
- BaBar previous result:

• < 2.2 × 10⁻⁶, based on 250 million D^0 .

MSSM

SM short ditsance

- This analysis:
 - Using 2.92 fb⁻¹ data taken at $\sqrt{s} = 3.773$ GeV, 20 million D^0 .
 - Double-tag.

10-6

Search for $D^0 \rightarrow \gamma \gamma$

• $D^0 \to \gamma \gamma$: PRD 91, 112015 (2015)

[Hajime Muramatsu, Xianghu Zhao and Daniel Ambrose et al.]

Analysis strategy:

REST

Tag reconstruction: 5 tag modes.

modes	$\epsilon^i_{ m tag}~(\%)$	$N^i_{ m tag}$	$\epsilon^{i}_{\mathrm{tag},\gamma\gamma}$ (%)
$K^+\pi^-$	66.12 ± 0.04	551800 ± 936	44.8 ± 0.4
$K^+\pi^-\pi^0$	35.06 ± 0.02	1097113 ± 1386	24.5 ± 0.1
$K^+\pi^-\pi^+\pi^-$	39.70 ± 0.03	734825 ± 1170	24.7 ± 0.2
$K^+\pi^-\pi^+\pi^-\pi^0$	15.32 ± 0.04	155899 ± 872	9.6 ± 0.1
$K^+\pi^-\pi^0\pi^0$	15.23 ± 0.04	268832 ± 976	8.9 ± 0.1
All Tags		2808469 ± 2425	

• $D^0 \to \gamma \gamma$: PRD 91, 112015 (2015)

[Hajime Muramatsu, Xianghu Zhao and Daniel Ambrose et al.]

Analysis strategy:

R(S)

• Signal reconstruction: $\Delta E_{\gamma\gamma}$, ΔE_{tag} .

Search for $D^0 \rightarrow \gamma \gamma$

FCNC searches at BESIII

[Hajime Muramatsu, Xianghu Zhao and Daniel Ambrose et al.]

Results:

R(-SIII

- Likelihood scan.
- Systematic uncertainties & upper limits.

Uncertainties independent of fitting procedure				
Source	Relative uncertainty (%			
Photon reconstruction	2.0			
$M_{\rm BC}^{\gamma\gamma}$ requirement	3.1			
ST D^0 yields	1.0			
Total	3.8			

$$\mathcal{B}(D^0 \to \gamma \gamma) < 3.8 \times 10^{-6}$$

ESI Search for J/ψ , $\psi(3686) \rightarrow D^0 e^+ e^-$

- $J/\psi, \psi(3686) \rightarrow D^0 e^+ e^-$: PRD 96, 111101(R) (2017) [Yateng Zheng et al.]
- Theoretical prediction: 10⁻¹³~10⁻¹⁰
 - MSSM/2HDM prediction: enhance 2~3 order

- BESIII previous result:
 - To the order of 10⁻⁵, based on $58 \times 10^6 J/\psi$ data.
- This analysis:
 - Using $1310 \times 10^6 J/\psi$ data and $448 \times 10^6 \psi(3686)$ data.
 - Single-tag.

EESI Search for J/ψ , $\psi(3686) \rightarrow D^0 e^+ e^-$

- $J/\psi, \psi(3686) \rightarrow D^0 e^+ e^-$: PRD 96, 111101(R) (2017) [Yateng Zheng et al.]
- Analysis strategy:
 - Fully single-tag reconstruction.
 - Reconstruction of D^0 .
 - Require a pair of e^+e^- to be found.

M(K π⁺π⁻π⁺) (GeV/c²)

ESI Search for J/ψ , $\psi(3686) \rightarrow D^0 e^+ e^-$

- $J/\psi, \psi(3686) \rightarrow D^0 e^+ e^-$: PRD 96, 111101(R) (2017) [Yateng Zheng et al.]
- Results:
 - Likelihood scan.
 - Systematic uncertainties & upper limits.

	$D^0 \rightarrow K^- \pi^+$		$D^{0} -$	$ K^{-}\pi^{+}\pi^{0}$	$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	
	J/ψ	$\psi(3686)$	J/ψ	$\psi(3686)$	J/ψ	ψ(3686)
Tracking*	4.0	4.0	4.0	4.0	6.0	6.0
PID*	6.0	6.0	6.0	6.0	8.0	8.0
γ detection			1.2	1.2		
Kinematic fit	1.7	1.6	1.1	1.8	2.2	2.0
Veto γ conversion*	1.7	1.7	1.7	1.7	1.7	1.7
Veto $K_S \rightarrow \pi^0 \pi^0$			0.6			
Veto $K_S \rightarrow \pi^+ \pi^-$					2.1	2.2
Veto $J/\psi \rightarrow e^+e^-$		0.1				
Branching fraction	1.3	1.3	3.6	3.6	2.6	2.6
ψ total number*	0.55	0.62	0.55	0.62	0.55	0.62
Others	1.0	1.0	1.0	1.0	1.0	1.0
Total	7.8	7.8	8.5	8.7	11.0	10.9

 $\begin{aligned} \mathcal{B}(J/\psi \to D^0 e^+ e^-) &< 8.5 \times 10^{-8} \\ \mathcal{B}(\psi(3686) \to D^0 e^+ e^-) &< 1.4 \times 10^{-7} \end{aligned}$

Dong Xiao (LZU)

Search for $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} e^+ e^-$

- $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} e^+ e^-$: PRD 97, 091102(R) (2018) [Yang Zhang et al.]
- Theoretical prediction: 10⁻¹⁴~10⁻¹⁰
 - MSSM/2HDM prediction: enhance 2~3 order
- This analysis:
 - First search.
 - Using $448 \times 10^{6} \psi(3686)$ data.
 - Single-tag.

$\underbrace{\mathsf{SII}} \quad \mathsf{Search for } \psi(3686) \to \Lambda^+_{\mathsf{c}} \overline{p} e^+ e^-$

- $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} e^+ e^-$: PRD 97, 091102(R) (2018) [Yang Zhang et al.]
- Analysis strategy:
 - Fully reconstruct 6 charged tracks.
 - Looking at $m_{pK^-\pi^+}$.

Results:

Using TRolke package.

$$\mathcal{B} \leq \frac{N_{up}}{N_{\psi(3686)} \times BF(\Lambda_c^+ \rightarrow pK^-\pi^+)},$$

$$\mathcal{B}(\psi(3686) \rightarrow \Lambda_c^+ \overline{p} e^+ e^-) < 1.7 \times 10^{-6}$$

Sources	Systematic uncertainty (%)
Number of $\psi(3686)$ decays	0.6
Track reconstruction	9.0
Particle identification	9.0
4C kinematic fit	1.0
BF of $\Lambda_c^+ \rightarrow p K^- \pi^+$	5.2
Signal region	4.0
$M_{p\pi^{-}}/M_{p\pi^{+}}$ criteria	1.0
Physics model	34.3
Total	37.2

Solution Search for $D^+(D^0) \rightarrow h(h')e^+e^-$

- $D^+(D^0) \rightarrow h(h')e^+e^-$: PRD 97, 072015 (2018) [Dong Xiao, Yu Zhang et al.]
- Theoretical prediction: <10⁻⁹
 - MSSM/2HDM prediction: 10⁻⁶
- CLEO2 previous results:
 ~10⁻⁵
- This analysis:
 - First search for D^+ .
 - Using 2.93 fb⁻¹ data at $\sqrt{s} = 3.773$ GeV.
 - Double-tag.

EXAMPLE 1 Search for $D^+(D^0) \rightarrow h(h')e^+e^-$

• $D^+(D^0) \rightarrow h(h')e^+e^-$: PRD 97, 072015 (2018)

[Dong Xiao, Yu Zhang et al.]

- Analysis strategy:
 - Tag reconstruction: 6 tag modes for D^+ , 3 tag mods for D^0 .

D ⁻ decays	$\Delta E_{\rm tag}~({\rm GeV})$	$\varepsilon^{\mathrm{i,MC}}_{\mathrm{tag}}$ (%)	n_{tag}^i
$K^{+}\pi^{-}\pi^{-}$	(-0.022, 0.021)	50.47 ± 0.06	755661 ± 922
$K^{+}\pi^{-}\pi^{-}\pi^{0}$	(-0.060, 0.034)	24.65 ± 0.05	231322 ± 729
$K_{S}^{0}\pi^{-}$	(-0.019, 0.021)	54.44 ± 0.17	95346 ± 330
$K_{S}^{0}\pi^{-}\pi^{0}$	(-0.071, 0.041)	27.44 ± 0.06	210535 ± 638
$K_{S}^{0}\pi^{+}\pi^{-}\pi^{-}$	(-0.025, 0.023)	31.80 ± 0.09	119249 ± 451
$K^{+}K^{-}\pi^{-}$	(-0.019, 0.018)	40.71 ± 0.16	64904 ± 259
\bar{D}^0 decays	$\Delta E_{\rm tag}~({\rm GeV})$	$\varepsilon^{i,MC}_{tag}$ (%)	n_{tag}^i
$K^+\pi^-$	(-0.023, 0.022)	64.64 ± 0.03	523265 ± 763
$K^{+}\pi^{-}\pi^{0}$	(-0.064, 0.035)	33.60 ± 0.01	1022697 ± 1448
$K^{+}\pi^{-}\pi^{+}\pi^{-}$	(-0.026, 0.023)	38.26 ± 0.02	707936 ± 1129

ESI Search for $D^+(D^0) \rightarrow h(h')e^+e^-$

• $D^+(D^0) \rightarrow h(h')e^+e^-$: PRD 97, 072015 (2018)

[Dong Xiao, Yu Zhang et al.]

- Analysis strategy:
 - Signal reconstruction: count & sideband subtraction & MC.

D ⁺ decays	$\Delta E_{\rm sig}~({\rm GeV})$	$M_{\rm BC}^{\rm sig}~({\rm GeV/c^2})$	n _{obs}	$n_{ m bkg1}^{ m SB}$	$n_{ m bkg2}^{ m MC}\pm\sigma_{ m bkg2}^{ m MC}$
$\pi^{+}\pi^{0}e^{+}e^{-}$	(-0.060, 0.030)	(1.864, 1.877)	4	0	5.3 ± 0.7
$K^{+}\pi^{0}e^{+}e^{-}$	(-0.063, 0.037)	(1.862, 1.877)	1	0	0.5 ± 0.2
$K_{s}^{0}\pi^{+}e^{+}e^{-}$	(-0.038, 0.020)	(1.865, 1.877)	6	0	4.6 ± 0.7
$K_S^0 K^+ e^+ e^-$	(-0.038, 0.021)	(1.865, 1.875)	0	0	0.2 ± 0.1
D ⁰ decays	$\Delta E_{\rm sig}$ (GeV)	$M_{\rm BC}^{\rm sig}~({\rm GeV/c^2})$	nobs	$n_{\rm bkg1}^{\rm SB}$	$n_{ m bkg2}^{ m MC}\pm\sigma_{ m bkg2}^{ m MC}$
$K^{-}K^{+}e^{+}e^{-}$	(-0.044, 0.015)	(1.858, 1.872)	2	0	0.9 ± 0.3
$\pi^{+}\pi^{-}e^{+}e^{-}$	(-0.053, 0.020)	(1.857, 1.873)	11	2	11.8 ± 1.1
$K^{-}\pi^{+}e^{+}e^{-}$	(-0.040, 0.018)	(1.857, 1.873)	49	1	32.4 ± 1.7
$\pi^{0}e^{+}e^{-}$	(-0.043, 0.020)	(1.853, 1.879)	2	0	2.1 ± 0.4
$\eta e^+ e^-$	(-0.094, 0.031)	(1.854, 1.878)	0	0	0.6 ± 0.3
ωe^+e^-	(-0.086, 0.035)	(1.854, 1,878)	2	0	4.0 ± 0.6
$K_{e}^{0}e^{+}e^{-}$	(-0.078, 0.035)	(1.858, 1.873)	4	0	2.2 ± 0.5

Dong Xiao (LZU)

ESI Search for $D^+(D^0) \rightarrow h(h')e^+e^-$

Source (%)

 K^{\pm}/π^{\pm} tracking K^{\pm}/π^{\pm} PID

-conversion veto

MC modeling

 $K^-K^+e^+$

2.0

1.0

6.9

1.8

3.0

8.0

 $\pi^+\pi^-e^+e^-$

2.0

1.0

2.8

1.8

12.8

13.4

 $K^{-}\pi^{+}e^{+}e^{-}$

2.0

1.0

4.5

1.8

24.6

25.2

 $\pi^{0}e^{+}e^{-}$

0.8

2.0

1.8

12.6

0.1

12.9

 $\eta e^+ e^- \omega e^+ e^-$

1.8 3.6

1.2

1.8 1.8

13.6 13.1

0.5

13.9 14.0

2.0

1.0

2.0

0.8

• $D^+(D^0) \rightarrow h(h')e^+e^-$: PRD 97, 072015 (2018)

[Dong Xiao, Yu Zhang et al.]

- Results:
 - Likelihood scan.
 - Systematic uncertainties & upper limits.

Signal decays	$B(\times 10^{-5})$	PDG [9] (×10 ⁻⁵)
$D^+ \rightarrow \pi^+ \pi^0 e^+ e^-$	<1.4	
$D^+ \rightarrow K^+ \pi^0 e^+ e^-$	<1.5	
$D^+ \rightarrow K^0_s \pi^+ e^+ e^-$	<2.6	
$D^+ \rightarrow K_{s}^{0}K^+e^+e^-$	<1.1	
$D^0 \rightarrow K^- K^+ e^+ e^-$	<1.1	<31.5
$D^0 \rightarrow \pi^+ \pi^- e^+ e^-$	< 0.7	<37.3
$D^0 \rightarrow K^- \pi^+ e^+ e^{-\dagger}$	<4.1	<38.5
$D^0 \rightarrow \pi^0 e^+ e^-$	< 0.4	<4.5
$D^0 \rightarrow \eta e^+ e^-$	< 0.3	<11
$D^0 \rightarrow \omega e^+ e^-$	< 0.6	<18
$D^0 \rightarrow K^0_s e^+ e^-$	<1.2	<11
[†] in $M_{e^+e^-}$ regions:		
[0.00, 0.20) GeV/c ²	$<3.0 (1.5^{+1.0}_{-0.9})$	
[0.20, 0.65) GeV/c ²	< 0.7	
[0.65, 0.90) GeV/c ²	$< 1.9 \ (1.0^{+0.5}_{-0.4})$	

 $K_{S}^{0}e^{+}e^{-}\pi^{+}\pi^{0}e^{+}e^{-}$

2.0

1.5

1.8

6.6

0.1

7.3

1.0

0.5

3.9

2.0

1.8

2.1

0.1

 $K^{+}\pi^{0}e^{+}e^{-}$

1.0

0.5

5.2

2.0

1.8

5.6

0.1

 $K_{S}^{0}\pi^{+}e^{+}e^{-}$

1.0

0.5

5.2

1.5

1.8

4.9

0.1

 $K_{S}^{0}K^{+}e^{+}e$

1.0

0.5

6.7

1.5

1.8

4.9

0.1

8.6

Introduction

Experiment

Prospect

Summary

Dong Xiao (LZU)

REST

T/m

For $\Psi(3770)$

Sample type

On-ψ(3770) (2010) 3.773

On-ψ(3770) (2011) 3.773

BESIII data set & capability

• BESIII data set: (from **BESIII physics page**)

Int. luminosity

14395-14604 2931.8±0.2±13.8 pb-1

Sample type	Ecms (GeV)	Run ID	Event number (Int. luminosity)
On-J/ψ (2009)	3.097	9947-10878	224.0±1.3M (80 pb-1)
On-J/ψ (2012)	3.097	27255-28236	1088.5±4.4M (315 pb-1)
On-J/ψ (2017-2019)	3.097	52940-54976 55861-56546 56788-59015	8774.0±39.4M (2571 pb-1)

Ecms (GeV)

Run ID

11414-13988

20448-23454

For ¥ (3686)

Sample type	Ecms (GeV)	Run ID	Event number (Int. luminosity)
On-ψ(3686) (2009)	3.686	8093-9025	107.0±0.8M (161.63±0.13 pb-1)
On-ψ(3686) (2012)	3.686	25338-27090	341.1±2.1M (506.92±0.23 pb-1)

Energy points	4.600 GeV	4.612 GeV	4.628 GeV	4.641 GeV	4.661 GeV	4.682 GeV	4.698 GeV
Lumi(pb ⁻¹)	566.90	103.45	519.93	548.15	527.55	1664.34	534.40

26

FCNC analysis in future

- On-going analysis:
 - $D_s^+ \rightarrow h(h')e^+e^-$, [Liang Sun, WHU] [NPG Group meeting Report]
- Analysis suggest in future:
 - Update of $J/\psi \rightarrow D^0 e^+ e^-$: more data sample
 - Update of $J/\psi \rightarrow \Lambda_c^+ \overline{p} e^+ e^-$: more data sample
 - Search for $\Lambda_c^+ \rightarrow p e^+ e^-$: large data sample + sufficient tag modes

FCNC searches at BESIII

Other suggestion ? ...

Introduction

Experiment

Prospect

Summary

Summary

- BESIII has advantages in search for $c \rightarrow u$ FCNC process.
- 4 Analysis of different kind FCNC have been carried out at BESIII, 4 papers produced.
 - $D^0 \to \gamma \gamma$: PRD 91, 112015 (2015)
 - $J/\psi, \psi(3686) \rightarrow D^0 e^+ e^-$: PRD 96, 111101(R) (2017)
 - $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} e^+ e^-$: PRD 97, 091102(R) (2018)
 - $D^+(D^0) \rightarrow h(h')e^+e^-$: PRD 97, 072015 (2018)
- Techniques are mature for FCNC analysis at BESIII.
- More data sample is needed.
- More analysis can be studied in future.

Thanks for your attention!

Dong Xiao (LZU)

FCNC searches at BESIII