Low-energy Phenomenology of Family Gauge Symmetry

Shoushan Bao ssbao@sdu.edu.cn

November 6, 2021

Family Gauge Symmetry SO(3) SU(3)

・ロト ・日下・ ・ ヨト・

Introduction

$SU(3) \times SU(2)_L \times U(1)$

Introduction

 $\sin^{2}(\theta_{12}) = 0.307 \pm 0.013, \sin^{2}(\theta_{23}) = 0.539 \pm 0.02,$ $\sin^{2}(\theta_{13}) = (2.20 \pm 0.07) \times 10^{-2}$ PDG(2020)

$$V_{TB} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}\\ \sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix} : \text{Tri-Bimaximal mixing: H. P. S. (2002)}$$
(1)

$$V_{\nu} = \begin{pmatrix} \frac{2}{\sqrt{6}}c_{\nu} & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}}s_{\nu} \\ -\frac{1}{\sqrt{6}}c_{\nu} - \frac{1}{\sqrt{2}}s_{\nu} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}c_{\nu} - \frac{1}{\sqrt{6}}s_{\nu} \\ -\frac{1}{\sqrt{6}}c_{\nu} + \frac{1}{\sqrt{2}}s_{\nu} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}c_{\nu} - \frac{1}{\sqrt{6}}s_{\nu} \end{pmatrix}$$

$$\equiv V_{TB} \begin{pmatrix} c_{\nu} & 0 & s_{\nu} \\ 0 & 1 & 0 \\ -s_{\nu} & 0 & c_{\nu} \end{pmatrix} \quad SO(3) \text{ YLWu}(2008)$$

$$(3)$$

Representations

$$\Psi^{U} = \begin{pmatrix} u \\ c \\ t \end{pmatrix}, \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}, \qquad \Psi^{D} = \begin{pmatrix} d \\ s \\ b \end{pmatrix}, \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix}, \qquad (4)$$

$$T^{a}/2:$$
 $(T^{a})_{bc} = -i\epsilon_{abc}$. and A^{a}_{μ} , $(a, b, c = 1, 2, 3)$ (5)

$$\mathcal{L} \supset -i\frac{g_f}{2} \epsilon_{abc} \bar{\Psi}^U_a \gamma^\mu \Psi^U_b A^c_\mu + (U \to D) \tag{6}$$

$$=\frac{g_f}{2}\bar{\Psi}^U V_U^c \gamma^\mu A^c_\mu \Psi^U + (U \to D) \tag{7}$$

・ロト ・日 ・ ・ ヨト ・

$$V_{\rm CKM} = V_U^{\dagger} V_D \tag{8}$$

H 5

Representations

$$\Psi^{U} = \begin{pmatrix} u \\ c \\ t \end{pmatrix}, \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}, \qquad \Psi^{D} = \begin{pmatrix} d \\ s \\ b \end{pmatrix}, \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix}, \qquad (4)$$

$$T^a/2:$$
 $(T^a)_{bc} = -i\epsilon_{abc}$. and A^a_{μ} , $(a, b, c = 1, 2, 3)$ (5)

$$\mathcal{L} \supset -i\frac{g_f}{2} \epsilon_{abc} \bar{\Psi}^U_a \gamma^\mu \Psi^U_b A^c_\mu + (U \to D) \tag{6}$$

$$=\frac{g_f}{2}\bar{\Psi}^U V_U^c \gamma^\mu A^c_\mu \Psi^U + (U \to D) \tag{7}$$

$$V_{\rm CKM} = V_U^{\dagger} V_D \tag{8}$$

In SM, V_u and V_d are not detectable. Only V_{CKM} is physical.

 $\Delta F = 2$ Process: $P - \bar{P}$ Mixing

 $\Delta F = 1$ processes are suppressed by mixing.

ヘロト ヘヨト ヘヨト ヘ

The effective Hamiltonian for the $\Delta F = 2$ processes,

$$\mathcal{H}_{\rm eff}(\Delta F = 2) = \mathcal{H}_{\rm eff}^{\rm SM}(\Delta F = 2) + \mathcal{H}_{\rm eff}^{\rm NP}(\Delta F = 2).$$
(10)

The \mathcal{H}_{eff}^{SM} is from the box diagrams in SM, while the \mathcal{H}_{eff}^{NP} is from the new gauge interactions,

$$\mathcal{H}_{eff}^{NP}(\Delta F = 2) = C_1^{D-\bar{D}}(\bar{u}c)_V(\bar{u}c)_V + C_2^{D-\bar{D}}(\bar{u}_{\alpha}c_{\beta})_V(\bar{u}_{\beta}c_{\alpha})_V + C_1^{K-\bar{K}}(\bar{d}s)_V(\bar{d}s)_V + C_2^{K-\bar{K}}(\bar{d}_{\alpha}s_{\beta})_V(\bar{d}_{\beta}s_{\alpha})_V + C_1^{B-\bar{B}}(\bar{d}b)_V(\bar{d}b)_V + C_2^{B-\bar{B}}(\bar{d}_{\alpha}b_{\beta})_V(\bar{d}_{\beta}b_{\alpha})_V + C_1^{B_s-\bar{B}_s}(\bar{s}b)_V(\bar{s}b)_V + C_2^{B_s-\bar{B}_s}(\bar{s}_{\alpha}b_{\beta})_V(\bar{s}_{\beta}b_{\alpha})_V.$$
(11)

At tree level, the Wilson coefficients are

$$C_{1}^{D-\bar{D}} = g^{2} \left(\sum_{i=1}^{3} \frac{U_{12}^{i}}{4M_{i}^{2}} \right), \qquad C_{1}^{K-\bar{K}} = g^{2} \left(\sum_{i=1}^{3} \frac{V_{12}^{i}}{4M_{i}^{2}} \right),$$
$$C_{1}^{B-\bar{B}} = g^{2} \left(\sum_{i=1}^{3} \frac{V_{13}^{i}}{4M_{i}^{2}} \right), \qquad C_{1}^{B_{s}-\bar{B}_{s}} = g^{2} \left(\sum_{i=1}^{3} \frac{V_{23}^{i}}{4M_{i}^{2}} \right).$$
(12)

Master Formulas

 $P - \bar{P}$ Mixing

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_W \tag{13}$$

$$|\psi\rangle = a(t)|P\rangle + b(t)|\bar{P}\rangle + \sum_{i} c_i(t)|n_i\rangle$$
(14)

Weisskopf-Wigner Approximation:

$$i\frac{d}{dt}\left(\begin{array}{c}a(t)\\b(t)\end{array}\right) = H\left(\begin{array}{c}a(t)\\b(t)\end{array}\right)$$
(15)

$$H = M - i\Gamma/2 \tag{16}$$

$$H_{ij} = m_0 \delta_{ij} + \langle i | \mathcal{H}_W | j \rangle + \sum_n P\left\{\frac{\langle i | \mathcal{H}_W | n \rangle \langle n | \mathcal{H}_W | j \rangle}{m_0 - E_n}\right\}$$
(17)

$$-i\pi \sum \delta(m_0 - E_n) \langle i | \mathcal{H}_W | n \rangle \langle n | \mathcal{H}_W | j \rangle$$
(18)

$$\Delta M = M_H - M_L = 2Re\sqrt{H_{12}H_{21}}$$
(19)

イロン イボン イヨン イヨン

$$H_{12} = \langle P | \mathcal{H}_{\rm eff} | \bar{P} \rangle \tag{21}$$

The factorizations of the hadron matrix elements

$$\langle \bar{P}|(V-A)(V-A)|P\rangle = \frac{4}{3}m_P f_P^2 B_1^P(\mu),$$
 (22)

$$\langle \bar{P}|(V-A)(V+A)|P\rangle = -\frac{2}{3}R(\mu)m_P f_P^2 B_2^P(\mu),$$
 (23)

where the factor $R = M^2/(m_q + m'_q)^2$ and the M is the average mass of the P and \bar{P} . m_q and $m_{q'}$ are the mass of the quarks which are the components of the meson. f_P is the decay constant and B_i s are the bag parameters which are unit in naive factorization.

• • • • • • • • • • • •

Input Parameters

	K	D	В	B_s
M_P	0.498GeV	1.86 GeV	5.28GeV	5.37GeV
f_P	$156\pm0.8{ m MeV}$	$191\pm23 {\rm MeV}$	$220\pm40 {\rm MeV}$	$205\pm10{\rm MeV}$
B_1	0.571 ± 0.048	0.87 ± 0.03	0.87 ± 0.04	0.86 ± 0.02
B_2	0.562 ± 0.039	1.46 ± 0.09	1.91 ± 0.04	1.94 ± 0.03

SM with above input (Refs. can be found in the paper)

$$\begin{split} \Delta M_K &= (3.483\pm 0.006)\times 10^{-15} \text{GeV}.\\ \Delta M_B &= (3.337\pm 0.033)\times 10^{-13} \text{GeV}\\ \Delta M_{B_s} &= (1.170\pm 0.008)\times 10^{-11} \text{GeV}\\ \Delta M_D &= (1.4\pm 0.5)\times 10^{-14} \text{GeV}. \end{split}$$

$$\begin{split} \Delta M_K &= 2.312^{+0.024+0.466}_{-0.024-0.462} \times 10^{-15} \text{GeV} \\ \Delta M_{B_d} &= 3.483^{+0.991+0.161}_{-0.789-0.159} \times 10^{-13} \text{GeV} \\ \Delta M_{B_s} &= 1.20^{+0.47+0.03}_{-0.77-0.03} \times 10^{-11} \text{GeV} \\ \Delta M_D &= 3.84^{+0.38+0.12}_{-0.36-0.14} \times 10^{-18} \text{GeV} \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Results

Result I

$$\begin{aligned} \frac{g_f^2}{M_1^2} &\leq 1.4 \times 10^{-10} \text{GeV}^{-2} & M_1 \geq 27 TeV \end{aligned} \tag{24} \\ \frac{g_f^2}{M_2^2} &\leq 4.2 \times 10^{-12} \text{GeV}^{-2} & M_2 \geq 160 TeV \\ \frac{g_f^2}{M_3^2} &\leq 1.0 \times 10^{-13} \text{GeV}^{-2} & M_3 \geq 10^3 TeV \end{aligned} \tag{26}$$

Result II

$$\Delta M_D = 0.85^{+0.08+0.04+0.12}_{-0.08-0.03-0.11} \times 10^{-14} \text{GeV}$$
⁽²⁷⁾

Li,Bao,Si (2012)

$$F_{\mu} = F_{\mu}^{a} \frac{\lambda^{a}}{2} = \begin{pmatrix} \frac{1}{2} \left(F_{3} + \frac{F_{8}}{\sqrt{3}} \right) & \frac{1}{2} \left(F_{1} - iF_{2} \right) & \frac{1}{2} \left(F_{4} - iF_{5} \right) \\ \frac{1}{2} \left(F_{1} + iF_{2} \right) & \frac{1}{2} \left(\frac{F_{8}}{\sqrt{3}} - F_{3} \right) & \frac{1}{2} \left(F_{6} - iF_{7} \right) \\ \frac{1}{2} \left(F_{4} + iF_{5} \right) & \frac{1}{2} \left(F_{6} + iF_{7} \right) & -\frac{F_{8}}{\sqrt{3}} \end{pmatrix}_{\mu}^{\mu}$$
(28)
$$\mathcal{L} \supset g_{F}^{2} \operatorname{tr} \left(F^{\mu} \Phi_{\nu} F_{\mu}^{*} \Phi_{\nu}^{*} + F^{\mu} \Phi_{\nu} \Phi_{\nu}^{*} F_{\mu}^{\dagger} + \Phi_{\nu} F_{\mu}^{T} F^{\mu*} \Phi_{\nu}^{*} + \Phi_{\nu} F_{\mu}^{T} \Phi_{\nu}^{*} F^{\mu\dagger} \right).$$
(29)
$$\langle \Phi_{\nu} \rangle = V_{0} + \begin{pmatrix} V_{1} & V_{2} & V_{2} \\ V_{2} & V_{2} & V_{1} \\ V_{2} & V_{1} & V_{2} \end{pmatrix}$$
(30)

Bao, Liu, Wu(2016)

イロト イヨト イヨト イヨト

The masses of the five heavy gauge bosons are

$$M_{1} = 2g_{F}V_{0}, \quad M_{2} = 2g_{F}(V_{0}^{2} + 2V_{1}V_{0} + V_{2}V_{0})^{1/2},$$

$$M_{3} = 2g_{F}(V_{0}^{2} + 3V_{2}V_{0})^{1/2},$$

$$M_{4} = \frac{2\sqrt{3}}{3}g_{F}V_{0}^{1/2} \left(2V_{0} + 2V_{1} + 4V_{2} + 2\sqrt{4V_{1}^{2} - 2V_{1}V_{2} + 7V_{2}^{2}}\right)^{1/2},$$

$$M_{5} = \frac{2\sqrt{3}}{3}g_{F}V_{0}^{1/2} \left(2V_{0} + 2V_{1} + 4V_{2} - 2\sqrt{4V_{1}^{2} - 2V_{1}V_{2} + 7V_{2}^{2}}\right)^{1/2}.$$
(31)

And the masses of the three light gauge bosons, which are related to the $SO(3)_{\cal F}$ symmetry, are

$$M_6 = 2g_F |V_2 - V_1|, \quad M_7 = 3g_F |V_2|, \quad M_8 = g_F |2V_1 + V_2|.$$
 (32)

$$V_0 > V_2 > V_1: \quad V_1, r_1 \equiv \frac{V_1}{V_0} \simeq \lambda, r_2 \equiv \frac{V_2 - V_1}{V_0} \simeq 2\lambda$$
 (33)

イロト イヨト イヨト イヨト

The Interactions

$$\mathcal{L}_{int} \supset \qquad g_F \left[\overline{u}_L \gamma^{\mu} (U_L^{u\dagger} F_{\mu} U_L^u) u_L + \overline{u}_R \gamma^{\mu} (U_R^{u\dagger} F_{\mu} U_R^u) u_R \right] \\ + g_F \left[\overline{d}_L \gamma^{\mu} (U_L^{d\dagger} F_{\mu} U_L^d) d_L + \overline{d}_R \gamma^{\mu} (U_R^{d\dagger} F_{\mu} U_R^d) d_R \right] \\ + g_F \left[\overline{e}_L \gamma^{\mu} (U_L^{e\dagger} F_{\mu} U_L^e) e_L + \overline{e}_R \gamma^{\mu} (U_R^{e\dagger} F_{\mu} U_R^e) e_R \right] \\ + g_F \overline{\nu}_L \gamma^{\mu} (U_L^{\nu\dagger} F_{\mu} U_L^\nu) \nu_L, \qquad (34)$$

Mixing Matrix Parameterization

$$U_{L}^{u} = U_{R}^{u} = U^{u}, \quad U_{L}^{d} = U_{R}^{d} = U^{d}, U_{L}^{e} = U_{R}^{e} = U_{e}, \quad U_{L}^{\nu} = U_{\nu} = U_{TB},$$
(35)

$$U_{CKM} = U^{u\dagger} U^d, \quad U_{PMNS} = U^{\dagger}_e U_{TB},$$
(36)

Mixing Matrix Parameterization

We can also assume that U^u, U^d and U_e have the same hierarchy structures as U_{CKM} and can be parameterized via Wolfenstein method.

$$U_{CKM} \sim \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \rho e^{-i\delta} \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3 (1 - \rho e^{i\delta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4).$$
(37)

For the mixing matrix in up(down) quark sectors, we have mixing matrix $U^u(U^d)$ with the parameters A, λ, ρ, δ replaced by $A_u, \lambda_u, \rho_u, \delta_u$ $(A_d, \lambda_d, \rho_d, \delta_d)$.

< ロ > < 同 > < 回 > < 回 >

$\Delta F = 2$: $K - \bar{K}$ mixing

$$\mathcal{H}_{K}^{New} = \mathcal{C}_{K}(\bar{s}\gamma_{\mu}d) \otimes (\bar{s}\gamma^{\mu}d) + H.c..$$
(38)

Here we treat λ_d as a small parameter and get the coefficient in Eq.(38) to the order of λ_d^2 . At higher order the heavy family gauge bosons' effects should be take into consideration. The coefficient C_K is

$$\mathcal{C}_{K} = \frac{1}{16} [F_{K}(V_{1}, V_{2}) + G_{K}(V_{1}, V_{2})A_{d}\lambda_{d}^{2}] + \mathcal{O}(\lambda_{d}^{3}),$$
(39)

where

$$F_{K}(V_{1}, V_{2}) = \frac{1}{6(V_{2} - V_{1})^{2}} + \frac{1}{3(2V_{1} + V_{2})^{2}} + \frac{1}{9V_{2}^{2}}.$$

$$G_{K}(V_{1}, V_{2}) = \frac{1}{3(V_{2} - V_{1})^{2}} + \frac{2}{3(2V_{1} + V_{2})^{2}} - \frac{2}{9V_{2}^{2}}.$$
(40)

イロト イヨト イヨト イヨト

$$\langle \bar{K}^{0} | \mathcal{H}_{eff}^{NP} | K^{0} \rangle = \frac{F_{K}(V_{1}, V_{2}) f_{K}^{2} M_{K}}{96} [1 + 2R(\mu)].$$
(41)
$$\frac{1}{F_{K}(V_{1}, V_{2})} = \frac{f_{K}^{2} M_{K}}{48\Delta m^{New}} [1 + 2R(\mu)] \ge \frac{f_{K}^{2} M_{K}}{48\Delta m_{K}}.$$
(42)

Results I:

$P^{0} - \bar{P^{0}}$	$[\Delta m_{meson}]^{PDG}$	M_{meson}	f_{meson}	$V_1 \ge$
$K - \bar{K}$	$(3.483 \pm 0.006) \times 10^{-12}$	497.6	156 ± 1.2	7.0×10^{7}
$D-\bar{D}$	$(1.57^{+0.39}_{-0.41}) \times 10^{-11}$	1864.86 ± 0.13	206 ± 11	$8.4 imes 10^7$
$B_d - \bar{B_d}$	$(3.337 \pm 0.033) \times 10^{-10}$	5279.58 ± 0.17	195 ± 11	$2.9 imes 10^7$
$B_s - \bar{B_s}$	$(116.4 \pm 0.5) \times 10^{-10}$	5366.77 ± 0.24	243 ± 11	0.7×10^7

 $V_1 \ge 69.8 TeV, \quad V_2 \ge 209 TeV, \quad V_0 \ge 317 TeV.$

Shoushan Bao ssbao@sdu.edu.cn (SDU) Low-energy Phenomenology of Family Gauge Symmetr

イロン イヨン イヨン イヨン

Result II. $\Delta F = 1$

$$Br(K^{+} \to \pi^{+}\nu\bar{\nu})|_{NP} \approx Br(K_{L} \to \pi^{0}\nu\bar{\nu})|_{NP} \leq 4.6 \times 10^{-16}.$$
 (44)

$$Br(K^{+} \to \pi^{+}\nu\bar{\nu})|_{SM} = (1.5^{+3.4}_{-1.2}) \times 10^{-10},$$
 (45)

$$Br(K_{L} \to \pi^{0}\nu\bar{\nu})|_{SM} = (2.6 \pm 1.2) \times 10^{-11}.$$
 (46)

$$Br(\mu \to e^{-}e^{+}e^{-}) \leq 4.1 \times 10^{-16}.$$
 (47)

$$Br(\mu \to 3e)|_{SM} \sim 10^{-56}.$$
 (48)

$$Br(\mu^{-} \to 3e)|_{Exp} < 1.0 \times 10^{-12}.$$
 (49)

Refs. can be found in the paper.

イロト イヨト イヨト イヨト

Family Gauge Symmetry

Something missed: Lepton flavor violation process

・ロト ・日下・ ・ ヨト・

Summary

- Introduce a new gauge symmetry or interaction
- $\Delta F = 2$ at tree-level
- SO(3):
 - ▶ New Physics scale $\Lambda_{\text{Family}} \sim 100 \text{TeV}$ in addition to $\Lambda_{\text{QCD}} \sim 100 \text{MeV}$ and $\Lambda_{EW} \sim 100 \text{GeV}$.

$$M_1 \ge 27 \text{TeV}, \quad M_2 \ge 160 \text{TeV}, \quad M_3 \ge 10^3 \text{TeV}.$$
 (52)

• Consistent result for ΔM_D

$$\Delta M_D = 3.84^{+0.38+0.12}_{-0.36-0.14} \times 10^{-18} \text{GeV}$$
(53)

• SU(3):

• $\Delta F = 2$ gives constrains to the vev

$$v_1 \ge 69.8, \quad v_2 \ge 209, \quad v_0 \ge 317$$
 (54)

< ロ > < 同 > < 回 > < 回 >

• $\Delta F = 1$

• Lepton number violating channels to be considered.

Summary

- Introduce a new gauge symmetry or interaction
- $\Delta F = 2$ at tree-level
- SO(3):
 - ▶ New Physics scale $\Lambda_{Family} \sim 100 TeV$ in addition to $\Lambda_{QCD} \sim 100 MeV$ and $\Lambda_{EW} \sim 100 GeV$.

$$M_1 \ge 27 \text{TeV}, \quad M_2 \ge 160 \text{TeV}, \quad M_3 \ge 10^3 \text{TeV}.$$
 (52)

• Consistent result for ΔM_D

$$\Delta M_D = 3.84^{+0.38+0.12}_{-0.36-0.14} \times 10^{-18} \text{GeV}$$
(53)

• SU(3):

• $\Delta F = 2$ gives constrains to the vev

$$v_1 \ge 69.8, \quad v_2 \ge 209, \quad v_0 \ge 317$$
 (54)

•
$$\Delta F = 1$$

• Lepton number violating channels to be considered.

Thanks for your attention

Shoushan Bao ssbao@sdu.edu.cn (SDU) Low-energy Phenomenology of Family Gauge Symmetr

-

・ロト ・日下・ ・ ヨト・

The particles in the model

	Fields	Representation			
	$\left(\begin{array}{c} u,c,t\\ d,s,b\end{array}\right)_L$	$(3_F, 3_C, 2_L, (1/6)_Y)$			
SM fermions	$(u, c, t)_R$	$(3_F, 3_C, 1_L, (2/3)_Y)$			
	$(d,s,b)_R$	$(3_F, 3_C, 1_L, (-1/3)_Y)$			
	$\left(\begin{array}{c} e, \mu, \tau \\ \nu_e, \nu_\mu, \nu_\tau \end{array}\right)_L$	$(3_F, 1_C, 2_L, (-1/2)_Y)$			
	$(e,\mu, au)_R$	$(3_F, 1_C, 1_L, (-1)_Y)$			
SM Higgs	Н	$(1_F, 1_C, 2_L, (1/2)_Y)$			
	U	$(3_F, 3_C, 1_L, (2/3)_Y)$			
New fermions	D	$(3_F, 3_C, 1_L, (-1/3)_Y)$			
New Territoris	E	$(3_F, 1_C, 1_L, (-1)_Y)$			
	N_R	$(3_F, 1_C, 1_L, 0_Y)$			
	Φ_1, Φ_2	$(8_F, 1_C, 1_L, 0_Y)$			
New Higgs	$\Phi_{ u}$	$(6_F, 1_C, 1_L, 0_Y)$			
	ϕ_s	$(1_F, 1_C, 1_L, 0_Y)$			
(日)(同)(日)(日)					

The Lagrangian of the model

The field strengths of all gauge fields, including the SU(3) family symmetry, are defined as

$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{F,\nu} - \partial_{\nu}A^{a}_{F,\mu} + g_{F}f^{abc}A^{b}_{F,\mu}A^{c}_{F,\nu},$$

$$G^{a}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} + g_{s}f^{abc}G^{b}_{\mu}G^{c}_{\nu},$$

$$W^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} + g_{w}\epsilon^{abc}W^{b}_{\mu}W^{c}_{\nu},$$

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}.$$
(55)

We define the covariant derivative as

$$D_{\mu} = \partial_{\mu} - ig_{F}A^{a}_{F,\mu}T^{a} - ig_{s}G_{\mu} - g_{w}W_{\mu} + ig'_{w}YB_{\mu}$$

= $D^{SM}_{\mu} - ig_{F}A^{a}_{F,\mu}T^{a}.$ (56)

The full Lagrangian is

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_k + \mathcal{L}_H + \mathcal{L}_Y + \mathcal{L}_N,$$
(57)

ヘロト ヘヨト ヘヨト ヘ

The Lagrangian

$$\begin{split} \mathcal{L}_{G} &= -\frac{1}{4} \left(F_{\mu\nu}^{a} F^{a\mu\nu} + G_{\mu\nu}^{b} G^{b\mu\nu} + W_{\mu\nu}^{c} W^{c\mu\nu} + B_{\mu\nu} B^{\mu\nu} \right) \\ \mathcal{L}_{k} &= \overline{u}_{L,R} i \gamma^{\mu} D_{\mu} u_{L,R} + \overline{d}_{L,R} i \gamma^{\mu} D_{\mu} d_{L,R} + \overline{e}_{L,R} i \gamma^{\mu} D_{\mu} e_{L,R} + \overline{\nu}_{L} i \gamma^{\mu} D_{\mu} \nu_{L}, \\ \mathcal{L}_{H} &= \mathcal{L}_{DH} - V[H, \Phi_{1}, \Phi_{2}, \Phi_{\nu}, \phi_{s}] \\ &= \left(D_{\mu}^{SM} H \right)^{\dagger} \left(D^{\mu,SM} H \right) + \operatorname{Tr} \left(D_{\mu} \Phi_{1} (D^{\mu} \Phi_{1})^{\dagger} \right) + \operatorname{Tr} \left(D_{\mu} \Phi_{2} (D^{\mu} \Phi_{2})^{\dagger} \right) \\ &+ \operatorname{Tr} \left(D_{\mu} \Phi_{\nu} (D^{\mu} \Phi_{\nu})^{*} \right) + \partial_{\mu} \phi_{s} \partial^{\mu} \phi_{s} - V \left(H, \Phi_{1}, \Phi_{2}, \Phi_{\nu}, \phi_{s} \right). \\ \mathcal{L}_{Y} &= y_{L}^{u} \overline{l} H U + y_{R}^{u} \overline{u}_{R} \phi_{s} U + \frac{1}{2} \overline{U} (\Delta_{1}^{U} \Phi_{1} + \Delta_{2}^{U} \Phi_{2}) U \\ &+ y_{L}^{d} \overline{l} \tilde{H} D + y_{R}^{d} \overline{d}_{R} \phi_{s} D + \frac{1}{2} \overline{D} (\Delta_{1}^{D} \Phi_{1} + \Delta_{2}^{D} \Phi_{2}) D \\ &+ y_{L}^{e} \overline{l} H E + y_{R}^{e} \overline{e}_{R} \phi_{s} E + \frac{1}{2} \overline{E} (\Delta_{1}^{E} \Phi_{1} + \Delta_{2}^{E} \Phi_{2}) E \\ &+ y_{L}^{v} \overline{l} \tilde{H} N_{R} + \frac{1}{2} \xi^{\nu} \overline{N}_{R} \Phi_{\nu} N_{R}^{e} + H.C.. \\ \mathcal{L}_{N} &= i \overline{U} \gamma^{\mu} (\partial_{\mu} - i g_{s} G_{\mu} - i g_{F} A_{F,\mu}^{a} T^{a}) U + i \overline{D} \gamma^{\mu} (\partial_{\mu} - i g_{s} G_{\mu} - i g_{F} A_{F,\mu}^{a} T^{a}) N_{R}. \end{split}$$