

Charmonium weak decays at BESIII

Ziyuan Li Sun Yat-sen University, China

NPG Workshop 2021 Nov 4-7, 2021, Online, China

Outline

- Charmonium weak decays
 - Weak semi-leptonic decay
 - FCNC weak semi-leptonic decay
 - Weak hadronic decay
- BEPCII & BESIII
- Charmonium weak decays at BESIII
- Summary and Future

Charmonium weak decays

- The decays of J/ψ are dominated by strong and electromagnetic interactions
- Weak decays, due to the smallness of the strength of the weak interaction, are rare processes
- The decay rate is $\propto G_F^5 m_c^5$, which is at the order of 10^{-11}
- The inclusive weak decay rate of J/ ψ : $Br \approx \frac{2/\tau_D}{\Gamma_{I/\psi}} \approx 10^{-8}$
- Study of Charmonium weak decays
 - Provide a further accurate examination of the mechanism
 - Probe new physics beyond the standard model

[1]Z.Phys.C.62.271 (1994)[2]EPJC,54,107 (2008)[3]PRD,78:074012 (2008)[4]AHEP,2013:706543 (2013)[5]PRD,92:074030 (2015) [6]JPG:NPP,44:045004 (2017)

Weak semi-leptonic decay

The branching ratios of semi-leptonic decays of J/ ψ (×10⁻¹¹)

Channel	QCDSR [1]	CLFQ [2]	BSW [3]	CCQM [4]	BSM [5]
$J/\psi \to D^- e^+ \nu_e$	$0.73^{+0.43}_{-0.22}$	5.1-5.7	$6^{+0.8}_{-0.7}$	1.71	$2.03^{+0.29}_{-0.25}$
$J/\psi ightarrow D^- \mu^+ u_\mu$	$0.71\substack{+0.43 \\ -0.22}$	4.7-5.5	$5.8^{+0.8}_{-0.6}$	1.66	$1.98\substack{+0.28 \\ -0.24}$
$J/\psi \to D_s^- e^+ \nu_e$	18^{+7}_{-5}	53-58	$104^{+9}_{-7.5}$	33	$36.7^{+5.2}_{-4.4}$
$J/\psi \to D_s^- \mu^+ \nu_\mu$	17^{+7}_{-5}	55-57	$99.3^{+9.5}_{-6.5}$	32	$35.4^{+5.0}_{-4.3}$

BR can be enhanced in Top-color model, the Minimal Supersymmetric SM with Rparity, the two-Higgs doublet model [6-8]

[1]EPJC,54:107 (2008) [4]PRD,92:074030 (2015) [7]PLB,345:483 (1995) [2]PRD,78:074012 (2008) [5]JPG:NPP,44:045004 (2017) [8]PRD,15:1958 (1977) [3]AHEP,2013:706543 (2013) [6]PRD, 60:014011 (1999)

FCNC weak semi-leptonic decay

• Forbidden at tree level by GIM mechanism

[1]EPJC,54:107 (2008)

[3]PLB,345:483 (1995)

• Can occur via a $c \rightarrow u$ transition at the loop level

QCDSR[1]:

$$\begin{split} &Br(J/\psi\to\overline{D}{}^0e^+e^-)=4.8^{+3.0}_{-1.5}{\times}10^{-14}\\ &Br(J/\psi\to\overline{D}{}^{*0}e^+e^-)=2.7^{+1.5}_{-1.0}{\times}10^{-13} \end{split}$$

$$\begin{split} Br(J/\psi \to \overline{D}{}^{0}\mu^{+}\mu^{-}) &= 4.5^{+2.8}_{-1.4} \times 10^{-14} \\ Br(J/\psi \to \overline{D}{}^{*0}\mu^{+}\mu^{-}) &= 2.5^{+1.4}_{-0.9} \times 10^{-13} \end{split}$$

New Physics model [2-4] predict that the Br can be enhanced by 2 to 3 orders of magnitude

[2]PRD, 60:014011 (1999) [4]PRD,15:1958 (1977)

2021/11/4

Weak hadronic decay

• Examine the mechanism that governs the hadronization process

The branching ratios of non-leptonic decays of J/ ψ for the Cabibbo-favored and color-favored channel (×10⁻¹⁰)

Channel	QCDSR [1]	BSW [2]	QCDF [3]	BSM [4]
$J/\psi \to D_s^- \pi^+$	$2^{+0.4}_{-0.2}$	$14.82^{+0.26}_{-0.46}$	21.8	$4.75_{-0.59}^{+0.67}$
$J/\psi \to D_s^- \rho^+$	12.6^{+3}_{-1}	$102.0^{+15.2}_{-12.0}$	76.4	$1.98\substack{+0.28 \\ -0.24}$
$J/\psi \to D_s^{*-}\pi^+$	$15^{+1.2}_{-0.4}$	/	/	$25.7^{+3.4}_{-3.1}$
$J/\psi \to D_s^{*-}\rho^+$	$52.6^{+7.2}_{-6.2}$	/	/	$58.6^{+7.8}_{-6.7}$

BEPCII and **BESIII**

Charmonium data at BESIII

Charmonium weak decays at BESIII

10 Billion J/ ψ, 3 Billion ψ(3686)

- Precise tests of SM
- Constrain model parameters
- Search for new phycis BSM

BESIII Charmonium weak decays publications

Phy	sics	Processes	Publication	
Se Weak Decays FC	Semi-leptonic	$J/\psi \to D_s^{(*)-}e^+\nu_e$	PRD 90, 112014 (2014)	
		$J/\psi \to D^- e^+ \nu_e$	JHEP 06, 157 (2021)	New
	FCNC	J/ψ and $\psi(3686) \rightarrow D^0 e^+ e^-$	PRD 96, 111101 (2017)	
		$\psi(3686) \rightarrow \Lambda_c^+ \bar{p} e^+ e^-$	PRD 97, 091102 (2018)	
	Hadronic	$J/\psi \to D_s^- \rho^+$ and $J/\psi \to \overline{D}{}^0 \overline{K}{}^{*0}$	PRD 89, 071101 (2014)	

 $J/\psi \rightarrow D_{s}^{(*)}e^{+}\nu_{e}$

PRD 90, 112014 (2014)

- 225 million J/ψ
- First search of $J/\psi \rightarrow D_s^{*-}e^+\nu_e$
- D_s^- reconstruct via 4 decays modes, D_s^{*-} reconstruct with $D_s^-\gamma$
- Check U_{miss} distribution, no signal is found in the signal region

 $J/\psi \rightarrow D^- e^+ \nu_e$

JHEP 06, 157 (2021)

- 10 Billion J/ψ
- D^- reconstruct via $K\pi\pi$
- Check U_{miss} distribution, no signal is found in the signal region
- Upper limits on BF(90% C.L.)

 $- Br(J/\psi \to D^{-}e^{+}\nu_{e}) < 7.1 \times 10^{-8}$

Improve two orders of magnitude

 \overline{c}

J/ψ and $\psi(3686) \rightarrow D^0 e^+ e^-$

NPG2021

- 1310 million J/ψ and 448 million ψ (3686)
- First search of $\psi(3686) \rightarrow D^0 e^+ e^-$
- Check $M_{K\pi}$, $M_{K\pi\pi^0}$, $M_{K\pi\pi\pi}$ distribution, no signal is found in the signal region
- Upper limits on BF(90% C.L.)
 - $Br(J/\psi \to D^0 e^+ e^-) < 8.5 \times 10^{-8}$
 - $Br(\psi(3686) \to D^0 e^+ e^-) < 1.4 \times 10^{-7}$
- Improve two orders of magnitude

2021/11/4

PRD 96, 111101 (2017)

 $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} e^+ e^-$

PRD 97, 091102 (2018)

- 448 million ψ(3686)
- First search of $\psi(3686) \rightarrow \Lambda_c^+ \bar{p} e^+ e^-$
- Check $M_{pK\pi}$ distribution, no signal is found in the signal region
- Large systematic uncertainty in MC modeling (~34%)
- Upper limits on BF(90% C.L.)

 $- Br(\psi(3686) \to \Lambda_c^+ \bar{p} e^+ e^-) < 1.7 \times 10^{-6}$

$J/\psi \rightarrow D_s^- \rho^+$ and $J/\psi \rightarrow \overline{D}^0 \overline{K}^{*0}$

PRD 89, 071101 (2014)

 W^{-}

- 225 million J/ψ
- Check M_{ρ} , $M_{\overline{K}^{*0}}$ distribution, no signal is found in the signal region
- Upper limits on BF(90% C.L.) •
 - $-Br(J/\psi \to D_s^- \rho^+) < 1.3 \times 10^{-5}$
 - $Br(I/\psi \to \overline{D}^0 \overline{K}^{*0}) < 2.5 \times 10^{-6}$

More on going work

- Many Charmonium weak decays study is on going
 - $-J/\psi \rightarrow D_s^- e^+ \nu_e$ $-J/\psi \rightarrow D^- u^+ \nu_u$ $-J/\psi \rightarrow \overline{D}{}^0 \pi^0, \overline{D}{}^0 \rho^0, \overline{D}{}^0 \eta, D^- \pi^+, D^- \rho^+$ $-\psi' \text{ weak decay}$

- ...

Summary

• Brief review of Charmonium weak decays at BESIII, no signal observed

Physics		Processes	Publication	Br (90% C.L.)
Weak Decays	Semi-leptonic	$J/\psi \to D_s^{(*)-}e^+\nu_e$	PRD 90, 112014 (2014)	$1.3(1.8) \times 10^{-6}$
		$J/\psi \to D^- e^+ v_e$	JHEP 06, 157 (2021)	7.1×10^{-8}
	FCNC	J/ψ and $\psi(3686) \rightarrow D^0 e^+ e^-$	PRD 96, 111101 (2017)	8.5 (14)×10 ⁻⁸
		$\psi(3686) \rightarrow \Lambda_c^+ \bar{p} e^+ e^-$	PRD 97, 091102 (2018)	1.7×10^{-6}
	Hadronic	$J/\psi \to D_s^- \rho^+$ and $J/\psi \to \overline{D}{}^0 \overline{K}{}^{*0}$	PRD 89, 071101 (2014)	13 (2.5)×10 ⁻⁶

- More potential with larger data sample
 - 1×10¹⁰ J/ ψ
 - $3 \times 10^{9} \psi(3686)$
 - Other Charmonium data in the future

Thank you!