

STAR重离子碰撞实验集体流的研究进展

施梳苏

华中师范大学

Outline

- Introduction
- Beam Energy Scan
- Results and Discussions
- Summary and Outlook

QCD Phase Diagram

STAR Detectors

- Larger acceptance
- **Excellent PID** with **uniform** efficiency
- Modest rates

- **iTPC**, **EPD** & **eTOF** upgrades completed
- All are in data-taking for BES-II program

STAR Fixed Target Setup

Good mid-rapidity coverage for FXT 3 GeV collisions

QCD物理研讨会暨基金委重大项目学术交流会, 2022年7月28-31日

THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT.

Beam Energy Scan

BES-II data taking has been finished

$\sqrt{s_{NN}}$ (GeV)	μ _в (MeV)	Events	Date collected
19.6	206	478 M	2019
14.6	262	324 M	2019
11.5	316	235 M	2020
9.2	373	162 M	2020
7.7	422	101M+163 M	2021
6.2	487	118 M	2020
5.2	541	103 M	2020
4.5	589	108 M	2020
3.9	632	170 M	2020
3.5	666	116 M	2020
3.2	697	201 M	2019
3.0	721	2361 M	2021

- Higher statistics, better detector performance and more energy points in BES-II
- Explore the QCD phase diagram and constrain the EoS at high baryon density

Anisotropic Flow

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1} v_n \cos\left[n(\phi - \Psi_n)\right]$$

 v_1 : directed flow; v_2 : elliptic flow; v_3 : triangular flow; v_4

 Anisotropic flow: Sensitive to the early stage of the collision
Heavy flavor flow
Study medium properties from motion of heavy quarks in medium
Multi-strange hadrons and φ meson: Less sensitive to late hadronic rescatterings

Event Plane Reconstruction

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

- TPC 2nd order event plane
 - EP resolution (R₂₂) is calculated by two sub-event method
- ➢ The 1st order event plane from east side EPD at 3 GeV
 - > The 1st order EP resolution (R_{11}) is calculated by three sub-event method
 - \triangleright R₁₂ is for v₂ measurement

Particle Identification

Good capability of particle identification based on TPC and TOF

Higher-order Flow in 200 GeV

RHIC top energy

- Light flavor, strange particles and φ mesons
- Follow the NCQ scaling up to v₄

Partonic collectivity

STAR: Phys. Rev. C.105, 064911 (2022) 孙旭, 施梳苏等

 $v_2(\phi)$ versus $v_2(p)$

Model calculations: T. Hirano et al., ; PRC77, 044909 (2008), PRC92, 044907 (2015)

- Ideal hydro + hadron cascade (JAM)
- Small hadron cross section + hadronic re-scattering effect on v_2 Mass $\phi > mass p \rightarrow v_2(\phi) > v_2(p)$
 - **\rightarrow** Break mass ordering for ϕ mesons and protons

 $v_2(\phi)$ versus $v_2(p)$

STAR: Phys. Rev. Lett.116, 062301 (2016)

- Violation of mass ordering in central collisions at 54.4 and 200 GeV
- Energy and centrality dependence of hadronic rescattering effect

STAR: arXiv: 2205.11073 兰少位, 施梳苏等

v₁: Softest Point

BESII : centrality dependence

dv₁/dy: the slope of directed flow versus rapidity near mid-rapidity

Hydrodynamic calculation with the 1st-order phase transition motivates the study

Net-proton slope changes sign twice EOS softest point?

UrQMD fails to reproduce the data

The slope of net-p is based on expressing the y dependence of v1 for all protons as:

 $[v_1(y)]_p = r(y)[v_1(y)]_{\bar{p}} + [1 - r(y)][v_1(y)]_{\text{net-}p}$

r: the ratio of anti-p to p.

STAR: Phys. Rev. Lett. 112, 162301(2014) H. Stoecker, Nucl. Phys. A 750, 121(2005)

A LAND ALL AND ALL AND

BESII v₁: 19.6 GeV

STAR 刘佐文: SQM2022, ISMD2022

- Resolution improved about 50% comparing to BES-I
- The statistical uncertainties reduced by a factor 8 comparing to BES-I results.

dv₁/dy vs. Centrality

v₁ slope of net-particle is larger in more peripheral collisions More transported quarks in the peripheral collisions

> v₁ slope of net-proton and net-kaon are similar in central and mid-central collisions

> 14.6 GeV: wait for final official centrality definition

Net-pion dv1/dy is positive at all centralities. To facilitate plotting in the figure opposite, net-pion dv1/dy is shown with reversed sign.

BESII v₂: 19.6 GeV

STAR 刘利珂: SQM2022

- The NCQ scaling holds within 20% for particles and within 10% for anti-particles
- The NCQ scaling of anti-particles better than particles: produced vs. transported quarks

The NCQ scaling holds within at 20% level

NCQ Scaling at 3 GeV

- The number of constituent quark (NCQ) scaling for v₂ holds down to 4.5 GeV, consistent with the nature of partonic collectivity
- At 3 GeV, the measured v₂ for all particles are negative and NCQ scaling is absent, especially for positive charged particles

STAR: Phys. Rev. C 88 (2013) 14902; Phys. Lett. B 827 (2022) 137003 X. Dong et al. Phys. Lett. B 597 (2004) 328-332

v₁ Slope and v₂ vs. Energy

- The v₁ slopes (dv₁/dy|_{y=0}) of baryons at 3 GeV are positive and larger than those of mesons
- For the first time, kaon and φ v₁ slopes are found to be positive at 3 GeV
- Opposite collective behavior to high energy results
- The results from UrQMD with baryonic mean-field potential qualitatively describe data at 3 GeV

EoS dominated by the baryonic interactions at 3 GeV

Summary

- > High Energy Collisions
 - Higher-order flow: partonic collectivity
 - \succ $v_2(\phi)/v_2(p)$: hadronic contribution on partonic flow
- Beam Energy Scan (II)
 - V₁: centrality dependence done for 19.6 and 14.6 GeV
 - V₂ and V₃: multi-strange hadrons done for 19.6 and 14.6 GeV
 - GeV: indication of new medium properties and an EoS dominated by baryonic interactions

Mapping the QCD phase diagram with more collision energies from BES-II

BES-II

Electron cooling + longer beam bunches for BES-II factor 4-15 improvement in luminosity compared with BES-I RHIC BES-II: 2019-2021

Detector upgrade

Event Plane Detector

important for flow and fluctuation analyses

iTPC upgrade

increases TPC acceptance to ~1.7 in η ; improves dE/dx resolution

ETOF upgrade

New charged hadron PID capabilities for $1.1 < |\eta| < 1.6$

Fixed target program

extends STAR's physics reach to region of compressed baryonic matter 19.6, 17.1, 14.5, 11.5, 9.2 and 7.7 GeV FXT: 3-7.7 GeV Focus on $\sqrt{s_{NN}} \le 20$ GeV region

Backup

Beam Energy Scan

Collider mode Au+Au Collisions

FXT mode

√s _{nn} (GeV)	Events (10 ⁶)	BES II / BES I	μ _B (MeV)	Т _{СН} (MeV)		√s _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	μ _B (MeV)	T (N	
200	238	2010	25	166		7.7	50+112	2019+2020	420	140	
62.4	46	2010	73	165		6.2	118	2020	487	13	
54.4	1200	2017	83	165		5.2	103	2020	541	12	
39	86	2010	112	164		4.5	108	2020	589	112	
27	30 (<mark>560</mark>)	2011/2018	156	162		2.0	117	2020	622	10	
19.6	538 / 15	2019 /2011	206	160		3.9	117	2020	033	10.	
14.5	325 / 13	2019 /2014	264	156		3.5	116	2020	666	93	
11.5	230 / 7	2020 /2010	315	152		3.2	200	2019	699	86	
9.2	160 / 0.3	2020 /2008	355	140		3.0	259	2018	750	80	
7.7	100 / 3	2021 /2010	420	140		3.0	2000	2021	750	80	
17.3	250	2021	230	158	(µв, T _{CH}) : J. Cleymans et al., PR C73 , 034905 (2006)						
BES-II data taking has been finished				ned		5TAR, arXiv:1007.2613 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598					

Higher statistics, better detector performance and more energy points in BES-II

Explore the QCD phase diagram and constrain the EoS at high baryon density