The qqHcc̄ accuracy measurement at CEPC

Yongfeng Zhu

advisor : Manqi Ruan

IHEP

2021年6月2日

Motivation

- The g(Hcc), the second generation fermion Yukawa coupling, is one of the most important benchmark at CEPC.
- The channel $qqH(H \rightarrow c\bar{c})$ has more significant statistics than that of $nnH(H \rightarrow c\bar{c})$.
- The color singlet identification has great impact on the g(Hcc) measurement.

decay mode	H → bb̄	$H \rightarrow c \bar{c}$	$H \rightarrow gg$	$Z \rightarrow q \bar{q}$	$Z \rightarrow \nu \nu$	$Z \to l^+ l^-$
branching ratio	57.7%	2.91%	8.57%	70%	20%	10%

Contents

- When CEPC operates at the $\sqrt{s} = 240 \text{ GeV}$ with integrated luminosity of 5600fb^{-1} , the $qqH(H \rightarrow c\bar{c})$ measurement accuracy($\frac{\sqrt{S+B}}{S}$) is 8.54%.
- The dependence of the current accuracy: color singlet identification.
 - With perfect jet clustering and jet matching, the $qqH(H \rightarrow c\bar{c})$ measurement accuracy can reach 5.49%.
 - With perfect flavor tagging algorithm, the $qqH(H \rightarrow c\bar{c})$ measurement accuracy can reach 2.14%.

Sample : signal : $qqHc\bar{c}$ bkg : all SM backgrounds at CEPC with 5600 fb^{-1}

The cut chain method is used in this analysis, it has four steps.

- Finding the full hadronic samples from all samples.
- Finding 4-quark samples
- **③** Finding $ZH(Z \rightarrow q\bar{q}, H \rightarrow q\bar{q})$
- Finding qqHcc

from the full hadronic samples.

(日)

from 4-quark samples.

from $ZH(Z \rightarrow q\bar{q}, H \rightarrow q\bar{q})$.

Firstly, finding the full hadronic samples from all samples.

イロト イポト イヨト イヨト

Secondly, finding 4-quark samples from the full hadronic samples.

<ロト < 同ト < ヨト < ヨト

cut chain

Thirdly, finding $ZH(Z \to q\bar{q}, H \to q\bar{q})$ from 4-quark samples. After finding 4-quark samples, the method of maximize $\chi^2 = \frac{(M_{12}-M_{B1})^2}{\sigma_{B1}^2} + \frac{(M_{34}-M_{B2})^2}{\sigma_{B2}^2}$ can be used to pair four jets into two di-jet systems.

• • • • • • • • • • •

Then a circle can be used to find ZH events.

Finally, finding $qqHc\bar{c}$ from $ZH(Z \rightarrow q\bar{q}, H \rightarrow q\bar{q})$.

э

the full cut chain shown in the following table :

						-				
	qqHcc	2f	SW	SZ	WW	ZZ	Mixed	ZH	total bkg	$\frac{sqrtS+B}{S}$
total	20461	8.01 <i>E</i> 8	1.95E7	9.07 <i>E</i> 6	5.08E7	6.39E6	2.18E7	1.12 <i>E</i> 6	9.10 <i>E</i> 8	1.47428
multiplicity	20461	3.04 <i>E</i> 8	1.46E7	3.37E6	4.85E7	6.00E6	1.81E7	1.08E6	3.96 <i>E</i> 8	0.972244
visEn	20456	1.54 <i>E</i> 8	1.30E7	1.66E6	4.00E7	4.25E6	1.80E7	8.28 <i>E</i> 5	2.32 <i>E</i> 8	0.745363
LLepEn	20431	1.50E8	5.16E6	8.01 <i>E</i> 5	3.09E7	3.66E6	1.78E7	7.82E5	2.09 <i>E</i> 8	0.707026
LNeuEn	20363	7.81 <i>E</i> 7	4, 29 <i>E</i> 6	2.48E5	2.96E7	3, 51 <i>E</i> 6	1.72E7	7.76E5	1.34 <i>E</i> 8	0.567833
thrust	17749	1.76E7	3.49E6	1.76 <i>E</i> 5	2.58E7	2.99E6	1.58E7	6.92 <i>E</i> 5	6.65 <i>E</i> 7	0.45947
$-log(Y_{34})$	17320	7.07 <i>E</i> 6	1.30E6	146 <i>E</i> 5	2.03E7	2.66E6	1.48E7	6.74 <i>E</i> 5	4.70E7	0.395851
HJetA	12897	3.74 <i>E</i> 6	5.71 <i>E</i> 5	74874	6.20E6	1.07 <i>E</i> 6	4.16E6	467006	1.63 <i>E</i> 7	0.313
ZJetA	10867	1.60 <i>E</i> 6	1.67E5	44807	2.97E6	606051	2.22E6	377305	7.99E6	0.260208
circle	8232	623811	4828	19847	1.52E6	263460	1.27E06	228194	3.92 <i>E</i> 6	0.240869
BDT	2905	18336	0	15	9590	7561	18318	1850	58577	0.08535

ILC: https://link.springer.com/article/10.1140/epjc/s10052-013-2343-8

for qqHbb

	qqHbb	2f	SW	SZ	ww	ZZ	Mixed	ZH	total bkg	<u>√S+B</u> S
BDT	127482	50425	0	22	5653	37532	4938	5793	104367	0.00377706

for qqHgg

	qqHgg	2f	SW	SZ	ww	ZZ	Mixed	ZH	total bkg	<u>√S+B</u> S
BDT	15807	102685	0	22	145749	33732	128757	23612	434558	0.0424535

э

ヘロト 人間 ト ヘヨト ヘヨト

The dependence of the current accuracy : color singlet identification

- jet clustering and jet matching
- flavor tagging performance
- others have not been analyzed

jet clustering and jet matching

For di-boson event, there are two MC truth bosons and two di-jet systems, the variable $\alpha_i = angle(di - jet system_i, truth boson_i)$, (i = 1, 2) is used to characterize the performance of jet clustering and jet matching.

< ロ > < 同 > < 回 > < 回 > < 回 > <

the red curve : $.(log10(\alpha_1) + 3)^2 + (log10(\alpha_2) + 3)^2 <= 3.1^2$ used to select events with good jet clustering and jet matching

 α detail :

https://link.springer.com/article/10.1140/epjc/s10052-019-6719-2

	qqHcc	2f	SW	SZ	ww	ZZ	Mixed	ZH	total bkg	sqrtS+B S
circle	8232	623811	4828	19847	1.52 <i>E</i> 6	263460	1.27E06	228194	3.92E6	0.240869
alpha	5401	15168	117	2437	80477	34510	72854	119181	309579	0.1064

- With alpha cut $(log10(\alpha_1) + 3)^2 + (log10(\alpha_2) + 3)^2 \le 3.1^2$, the $qqHc\bar{c}$ measurement accuracy can reach 0.1064 even though without flavor tagging algorithm.
- With optimized flavor tagging performance, the accuracy can reach 0.0548824.

flavor tagging

introduce the flavor tagging performance matrix :

eff to true	с	b	udsg
udsg	udsg <mark>to</mark> c	udsg <mark>to</mark> b	udsg <mark>to</mark> udsg
b	b <mark>to</mark> c	b <mark>to</mark> b	b <mark>to</mark> udsg
С	c <mark>to</mark> c	c <mark>to</mark> b	c <mark>to</mark> udsg

to : identified as

	С	b	udsg
udsg	0	0	1
b	0	1	0
с	1	0	0

perfect flavor tagging

	с	b	udsg
udsg	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
b	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
с	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

3 K K 3 K

non flavor tagging

signal : $qqHc\bar{c}$ after alpha cut background : 4-quark samples after alpha cut

Yongfeng Zhu advisor : Manqi Ruan (UCAS)

The gqHcc accuracy measurement at CEPC

Optimized matrix

- Suppose that the alpha cut has exclude the events with bad jet clustering and bad jet matching.
- Then the b-likeliness and c-likeliness of two jets from heavy di-jet system, corresponds to Higgs for qqHqq̄, can be displaced in 2D graph.
- The cut on b-likeliness and c-likeliness can be find to maximize the value of $eff(b \rightarrow b) + eff(c \rightarrow c) + eff(udsg \rightarrow udsg)$, the trace of flavor tagging matrix.

Yongfeng Zhu advisor : Manqi Ruan (UCAS)

The qqHcc accuracy measurement at CEPC

- accuracy : $\frac{\sqrt{S+B}}{S}$
- accuracy for ggHcc : 5.49%
- accuracy for every bin
- o combined accuracy : $\frac{1}{\sqrt{bin_i \cdot bin_i + bin_j \cdot bin_j}}$ iterate for bin_i•bin_i each pair of bins

< 177 ▶

changing flavor tagging performance :

 $\begin{array}{l} \textit{non flavor tagging} \rightarrow \textit{perfect flavor tagging} \\ \textit{the changing procedure of flavor tagging performance matrix :} \\ \textit{temp matrix} = \frac{x - trace_l}{trace_T - trace_l} \cdot (T - I) + I \qquad (trace_l \leq x \leq trace_T) \\ T : matrix with perfect flavor tagging \\ I : matrix with non flavor tagging \\ \textit{trace}_l, \textit{trace}_T : \textit{the trace of matrix I and T} \end{array}$

The x value and flavor tagging performance matrix have a one to one relation.

the variation of $qqHc\bar{c}$ measurement accuracy with trace

with perfect jet clustering and jet matching : 5.49% with perfect flavor tagging : 2.14%

the variation of $qqHb\bar{b}$ measurement accuracy with trace

with perfect jet clustering and jet matching : 0.37% with perfect flavor tagging : 0.33%

Summary :

- At present, the $qqHc\bar{c}$ measurement accuracy is 8.54%.
- The color singlet identification, including jet clustering, jet matching and flavor tagging, has great impact on *qqHcc̄* accuracy measurement.
 - With perfect jet clustering and jet matching, the *qqHcc̄* measurement accuracy can reach 5.49%.
 - With perfect jet clustering, jet matching and flavor tagging, the *qqHcc̄* measurement accuracy can reach 2.14%.
- Next, we need to optimize the cut chain and find a reconstructed variable which can describe the influence of jet clustering and jet matching, instead of the variable α.

- 4 同 ト 4 回 ト

Thanks !

Э

Backup

æ

イロト イロト イヨト イヨト

the variation of qqHgg measurement accuracy with trace

with perfect jet clustering and jet matching : 2.97% with perfect flavor tagging : 2.36%