Heavy Neutrino Searches at the CEPC

Kechen Wang (王科臣) Wuhan University of Technology

CEPC Snowmass Progress Meeting

June 10, 2021

Based on [Yu Gao's slides; Yu Gao & K. Wang, hep-ph/2102.12826; Zeren Simon Wang & K. Wang, PRD 101 (2020) no.7, 075046]

OUTLINE

Motivations & Constraints on N Searches

Pheno. Studies on N Searches @ ee

Our Studies

- \rightarrow Prompt case
- \rightarrow Long-lived case

Summary

Theory Motivations

Discovery of neutrino oscillations => neutrinos have mass
→ In SM, neutrinos are massless
→ A window to BSM physics

Type-I see-saw: Singlet (Sterile) Fermions

Simplified model with assumption for collider searches:

Only 1 generation of sterile neutrinos is light & within experimental reach;

 $V_{NT} = 0;$

3 free parameters: m_N , V_{Ne} , $V_{N\mu}$, Dirac/Majorana.

m_N: 0.1 ~ 500 GeV

Global Constraints

LHC Limits

[LHC, CMS experiment: hep-ex/1806.10905, CMS-EXO-17-028, CMS, JHEP 01 (2019) 122 "Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at 13 TeV"]

2/ (SS) + ≥ 1 j

Long-lived Case

Summary

LHC Limits

[Claudio O. Dib, C.S. Kim, **Kechen Wang**, Phys.Rev. D95 (2017) no.11, 115020, cited by CMS collaboration]

$$s \equiv 2 \times 10^6 \times \frac{|U_{Ne}U_{N\mu}|^2}{|U_{Ne}|^2 + |U_{N\mu}|^2} \qquad r \equiv \frac{|U_{Ne}|^2}{|U_{N\mu}|^2}$$

when
$$r = 1$$
, $|U_{Ne}|^2 = |U_{N\mu}|^2 = s \times 10^{-6}$

[LHC, CMS experiment: Phys.Rev.Lett. 120 (2018) no.22, 221801, "Search for heavy neutral leptons in events with three charged leptons in protonproton collisions at 13 TeV"]

Long-lived Case

Summary

Leading Order N Productions @ ee

Single N production via v-N mixing.

effective couplings $\propto |V_{IN}|^2$

NN pair production via N_R couplings

 \propto scalar mixing $|{\sin \alpha}|^2$

 $\mathcal{L} \supset V(\Phi) + V(S) + \lambda |\Phi|^2 S^2$ $+ y_N S \bar{N}_R^c N_R + y_D \bar{L} \Phi N_R + c.c.$

 y_D is suppressed by active v mass y_N is **not**.

Long-lived Case

Summary

Heavy N @ ee: Single N at Z-pole

 $e^{-}e^{+} \rightarrow Z \rightarrow v N \rightarrow v lW \rightarrow v ljj @ Z pole$

similar sensitivity reach for V $_{\mu N}$ [J.-N. Ding, Q.Qin, F.-S.Yu, 1903.02570]

Long-lived Case

Summary

Heavy N @ ee: Single N at 240 GeV

[W.Liao, X.-H.Wu, 1710.09266]

 $N \rightarrow vh$

 $e^+e^- \rightarrow v N \rightarrow h + MET$

[S.Antusch, O.Fischer, 1502.05915]

Long-lived Case

Summary

Heavy N @ ee: Single N at 240 GeV

 $h \rightarrow v N @ ee$ [S.Antusch, O.Fischer, 1502.05915]

(*app*, top, VV bkgs are significant. gg $\rightarrow h \rightarrow v N$ search needs an **ISR kick** [A.Das, Y.Gao, T.Kamon, <u>1704.00881</u>]

 $h \rightarrow l^{-}l'^{+}$ flavor violating decays @ee see [Q.Qin, Q.Li, C.-D.Lu, F-S.Yu, S.-H.Zhou, 1711.07243]

Long-lived Case

Summary

11

NN @ ee: Displaced vertex (long-lived N)

 At fixed prod. rate
 Gray:
 $0.01 \text{ eV} < m_{\nu} = V_{\mu N}^2 m_N < 0.3 \text{ eV}$
 $M_{h_2} = 450 \text{ GeV}, \quad \sin \alpha = 0.3$ $e^+e^- \rightarrow Z \rightarrow Zh_1 \rightarrow Z + NN$ [F.F.Deppisch, W.Liu, M.Mitra, 1804.04075]

Long-lived Case

Summary

Type II @ ee: Exotic/seesaw scalar search

via coupling to leptons and SM gauge/Higgs bosons.

'Assume no LNV background'

neutral scalar production

 $\mathcal{L}_{H_3} \supset h_{\alpha\beta} H_3 \overline{\ell}_{\alpha} \ell_{\beta,} + \text{H.c.}$

doubly charged scalar production

[B.Dev, R.N.Mohapatra, Y.Zhang, 1803.11167]

Long-lived Case

Summary

NN @ pp: Higgs mixing (with scalar)

- Assuming the Higgs is the only visible scalar.
- Can h→ NN probe the h-s mixing to tiny levels? -- 'small coupling'

 $\sin^2 \alpha \ll 1,$ $\lambda \cdot \max(v_S^2, v_{\Phi}^2) \ll \min(m_s^2, m_{\phi}^2).$

• Mostly decoupled Φ , S sectors if the mixing terms are small.

How about using ee→Zh at Higgs Factory?

pp limit, [Y.Gao, M.Jin, K.Wang, 1904.12325]

$$\mathcal{L} \supset V(\Phi) + V(S) + \frac{\lambda}{2} |\Phi|^2 S^2 + y_N S \bar{N}_R^c N_R + y_D \bar{L} \Phi N_R + \text{c.c.}$$

Long-lived Case

Summary

A Minimal Setup

$$\Delta \mathcal{L} \supset -y_D \bar{L} \tilde{\Phi} N_R - y_S S \overline{N_R^c} N_R + c.c. + \lambda |\Phi|^2 S^2 + V_S.$$

SM Higgs-like
$$\Phi = v_{\Phi} + \phi$$
 ϕ s vev gives the N mass $S = v_S + s$ ϕ $m_{\phi}^2 \quad \lambda v_{\phi} v_s$ $m_{N_R} = 2y_N v_S$ s $\lambda v_{\phi} v_s$ m_s^2

Small coupling:
$$\lambda v_{\Phi} v_S \ll m_h^2, m_s^2$$
 $\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi \\ s \end{pmatrix}$ & neglecting $|\Phi|^2$ S terms

Prompt Case

Long-lived Case

Summary

NN: Semileptonic, fully leptonic & mixed decays

$$\sigma_{\text{sig.}} = (\sigma_{h_1} \cdot BF_{h_1 \to NN} + \sigma_{h_2}) \cdot BF_{\text{sig.}}A_{\text{eff}}$$

$$\Gamma(h_1 \to NN) = \frac{1}{2} \sin^2 \alpha \cdot \frac{y_N^2 m_{h_1}}{8\pi} \left(1 - \frac{4m_N^2}{m_{h_1}^2}\right)^{3/2}$$

Both $h_1 \rightarrow NN$ branching and $\sigma(h_2)$ scale ~ $|\sin \alpha|^2$ $h_2 \rightarrow NN$ branching ~ 100% if $|V_{IN}|^2$ is small

ee@240 GeV: assume h_2 is much heavier & ignore ee \rightarrow Z h_2

NN@ee : SM backgrounds

1. Intrinsic backgrounds

Randomly flavored leptons emerges from W/W*. i.e W & tau decays.

 $\tau^+\tau^-\tau^+\tau^-,\ \tau^+\tau^-\tau^+\tau^-Z,\ \tau^+\tau^-W^+W^-.$

2. Missed leptons (& wrong signs)

 $\tau^+\tau^-Z, l^+l^-Z, \tau^+\tau^-l^+l^-Z, l^+l^-l^+Z, l^+l^-W^+W^-$

up to 2 weak bosons for 240 GeV. τ decay may yield jets. N decay jets are soft. Leptonic Z decay may contribute to N_l and SS 6τ , 6l channels are not independent. Signal strategy:

Assume Z→jj (more jets) Require SS leptons Strict lepton charge & count cuts Categorize on N_l: 2-4 visible leptons with flavor-distinguishable SS pairs

2I channel: SS dilepton $+(\geq 3)$ jets

$$h_1 \rightarrow NN \rightarrow \ell^{\pm}\ell^{\pm} + 4j, \ell = e, \mu$$

(i) exactly two leptons, $N(\ell) = 2$ with $p_T(\ell) > 5$ GeV; (ii) two leptons have the same sign; (iii) veto τ leptons, $N(\tau) = 0$; (iv) at least three jets, $N(j) \ge 3$; (v) small missing energy, $\not\!\!\!E_T < 15$ GeV.

[Y.Gao, K.Wang, 2102.12826]

		initial	cuts(i-ii)	cuts(iii-iv)	$\operatorname{cuts}(v)$
	$10 \mathrm{GeV}$	10^{3}	6.3	0.29	0.18
Sig.	$20 \mathrm{GeV}$	10^{3}	35.9	8.8	6.4
	$30 \mathrm{GeV}$	10^{3}	72.3	22.6	17.5
	$40 \mathrm{GeV}$	10^{3}	97.2	32.5	25.3
	$50 \mathrm{GeV}$	10^{3}	112	37.4	28.8
	$60 \mathrm{GeV}$	10^{3}	121	40.5	30.2
	4τ	1.69×10^4	870	4.6×10^{-2}	7.7×10^{-3}
	$^{\dagger}2\tau Z$	6.80×10^{5}	2.91×10^3	4.6	0.93
	$^{\dagger}2\ell Z$	1.74×10^6	3.98×10^3	-	-
Bkg	$4\tau Z$	93.0	2.0	0.19	5.9×10^{-2}
Drg.	$2\tau 2W$	4.42×10^3	63.6	0.92	8.2×10^{-2}
	$^{\dagger}2\ell 2\tau Z$	584	13.8	2.0	0.75
	$^{\dagger}4\ell Z$	862	16.5	2.2	2.1
	$^{\dagger}2\ell 2W$	2.74×10^4	639	11.7	1.2
			lepton	jet	
			cuts	cuts	

MG5+Pythia8+Delphes CEPC card

```
[ C.Chen, et.al. 1712.09517 ]
```

```
Bkg @ 5.6 ab<sup>-1</sup>
```

Signal ~10% eff. w lepton cuts ~2% sig. eff. at N_{bkg}~1 level

3I channel: SS dilepton + I +(\geq 2) jets

$$Zh_1 \to \ell^{\pm}\ell^{\pm}\ell + 4j + \not\!\!\!E_T$$

(i) exactly three leptons $N(\ell) = 3$ with $p_T \ge 5$ GeV; (ii) veto OSSF lepton pairs; (iii) veto τ leptons, $N(\tau) = 0$; (iv) at least two jets, $N(j) \ge 2$.

[Y.Gao, K.Wang, 2102.12826]

		initial	cuts(i)	cuts(ii)	cuts(iii-iv)
Sig.	$10 \mathrm{GeV}$	10^{3}	27.9	5.6	2.3
	$20 \mathrm{GeV}$	10^{3}	62.7	13.6	6.6
	$30 \mathrm{GeV}$	10^{3}	85.8	19.9	10.0
	$40 \mathrm{GeV}$	10^{3}	102	24.9	12.7
	$50 \mathrm{GeV}$	10^{3}	112	27.3	14.1
	$60 \mathrm{GeV}$	10^{3}	115	28.2	14.4
	4τ	1.69×10^{4}	614	155	3.8×10^{-2}
	$^{\dagger}2\tau Z$	6.80×10^{5}	1.30×10^4	350	-
	$^{\dagger}2\ell Z$	1.74×10^6	5.03×10^4	121	-
Bko	$4\tau Z$	93.0	2.1	0.25	7.3×10^{-2}
Dig.	$2\tau 2W$	4.42×10^{3}	27.8	6.9	0.72
	$^{\dagger}2\ell 2\tau Z$	584	46.5	1.1	0.44
	$^{\dagger}4\ell Z$	862	132	0.27	1.4×10^{-2}
	$^{\dagger}2\ell 2W$	2.74×10^4	1.30×10^3	37.8	5.0×10^{-2}
				1 /	• ,
				lepton	jet
				cuts	cuts

Bkg @ 5.6 ab⁻¹

O(1%) sig. eff. at N_{bkg}~1 level

3I channel's **Bonus**: SS trilepton

Z decay yield `correct'-sign lepton if its `incorrect'-sign company goes missing

SS-trilepton arises:

after cut (i-ii), signal ~ 7.6%, while SM bkg ~ 0.2%

Clean channel, yet signal yield is also smaller.

4I channel: two SS dileptons $+(\geq 1)$ jets

[Y.Gao, K.Wang, 2102.12826]

		initial	$\operatorname{cuts}(i)$	cuts(ii)	cuts(iii-iv)
Sig.	$10 { m GeV}$	10^{3}	15.9	1.1	0.71
	$20~{\rm GeV}$	10^{3}	17.5	1.1	0.72
	$30~{\rm GeV}$	10^{3}	22.1	1.3	0.80
	$40~{\rm GeV}$	10^{3}	26.8	1.5	0.98
	$50~{\rm GeV}$	10^{3}	30.1	1.8	1.2
	$60~{\rm GeV}$	10^{3}	32.1	2.1	1.3
	4τ	1.69×10^{4}	58.4	6.8	-
	$^{\dagger}2\tau Z$	6.80×10^{5}	2.26×10^3	9.6	-
	$^{\dagger}2\ell Z$	1.74×10^6	7.28×10^4	-	-
Bkø	$4\tau Z$	93.0	0.45	6.4×10^{-3}	2.8×10^{-3}
DKg.	$2\tau 2W$	4.42×10^{3}	1.3	0.17	-
	$^{\dagger}2\ell 2\tau Z$	584	13.8	1.0×10^{-2}	3.2×10^{-3}
	$^{\dagger}4\ell Z$	862	116	7.8×10^{-4}	-
	$^{\dagger}2\ell 2W$	2.74×10^4	217	-	-
			N.=4	Two SS	iet

dileptons cuts (for sensitivity)

(i) exactly four leptons, $N(\ell) = 4$ with $p_T(\ell) \ge 5$ GeV; (ii) exactly two electrons with the same charges; exactly two muons with the same charges; electrons and muons have opposite charges; i.e. exactly $e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$ lepton pairs;

(iii) veto τ leptons, $N(\tau) = 0$;

(iv) at least one jet, $N(j) \ge 1$.

~10 bkg events w two SS dileptons @5.6 ab⁻¹

lofty cost: sig. eff $\sim 0.1\%$

Long-lived Case

Summary

Mixing angle reach @ CEPC

ee @ 240 GeV, 5.6 ab⁻¹:

 $|\sin \alpha|^2 < 10^{-4}$ sensitivity for $y_S \sim O(1)$ comparable to HL-LHC

$$\left|\sin \alpha \cdot y_{S}\right|^{2} = \mathrm{BR}(h_{1} \to NN) \cdot 16\pi \frac{\Gamma_{h_{1}}}{m_{h_{1}}} \left(1 - \frac{4m_{N}^{2}}{m_{h_{1}}^{2}}\right)^{-3/2}$$

Long-lived Case

Long-lived Heavy Neutrinos

[Zeren Simon Wang & K. Wang, PRD 101 (2020) no.7, 075046]

sc	enario	$Z \to N \nu$					
LLP		N					
production		Z				$e^ \nu_l$	
$e^-e^+ \rightarrow$							
$\sqrt{s} [\text{GeV}]$		9	1.2		has been undated	A	
N_{1}	CEPC				to 1.5×10^{12}	u	
	FCC-ee						
N_Z	CEPC	7.0 imes 1	10^{11} [16]	16 al	p^{-1} , 2 years, 2 IPs		
	FCC-ee	5.0 imes 1	10^{12} [20]	150 a	ab ⁻¹ , 4 years, 2 IPs		

Prompt Case

Long-lived Case

Summary

Signal Calculation

 $N_{\rm LLP}^{\rm obs} = N_{\rm LLP}^{\rm prod} \cdot \langle P[\text{LLP in f.v.}] \rangle \cdot \text{Br}(\text{LLP} \rightarrow \text{visible})$

Average Decay Probabilities in FD

 $P(\Delta L) = e^{-L_1/\lambda} - e^{-L_2/\lambda}$, probability of decaying between L_1 and L_2 ($L_1 < L_2$)

in the lab. frame:

$$\lambda = \beta c \, \gamma \tau = \frac{p}{E} \frac{E}{m} c \tau = \frac{p}{m} c \tau$$

Depends on theory model parameters (kinematics, mass, lifetime) & geometry of FD

Long-lived Case

Summary

Kinematical Distributions

FDs in the very forward direction like FASER may not work at ee colliders. Better to be installed in the central region.

Prompt Case

Limits @ Z-pole

$Z \rightarrow N\nu @ \sqrt{s} = 91.2 \text{ GeV}$

Limits @ Z-pole

$Z \rightarrow N\nu @ \sqrt{s} = 91.2 \text{ GeV}$

750 ab⁻¹, 10 years, 4 IPs; or to increase the instantaneous luminosity; or to relax the theoretical assumptions

Can test the Type-I seesaw directly!

Summary

Heavy Neutrinos are important physics targets @ future lepton colliders.

Already a few CEPC pheno. studies focusing mainly on the single N production from Z/h rare decays.

prompt N: $e^-e^+ \rightarrow Zh \rightarrow (jj)(NN)$ @ 240 GeV, 5.6 ab⁻¹ Br($h \rightarrow NN$), $|\sin \alpha|^2 \sim 10^{-4}$, comparable to HL-LHC

Long-lived N with ND & with FDs: $e^-e^+ \rightarrow Z \rightarrow N\nu$ @ Z-pole, 150 ab⁻¹ $|V|^2 \sim 10^{-10}$; Could test the Type-I seesaw directly with more luminosities.

More signal signatures, especially those limits can be competed with LHC, need to be investigated.