

中國科學院為能物況加完所 Institute of High Energy Physics Chinese Academy of Sciences

Status of TaichuPix chips

Zhang Ying On behalf of the CEPC MOST2 Vertex detector design team 2021-6-25

Outline

- Status review
- Updates on test result
- Full size chip design

MOST2 project requirements on pixel chip

Motivation for TaichuPix chip design

Large-scale & full functionality pixel chip

Ref: Introduction to the Pixel MOST2 Project, Joao Costa, 2018.6

Fit to be assembled on ladders with backend Elec. & DAQ

TaichuPix architecture

Similar to the ATLAS ITK readout architecture: "column-drain" readout

- > Priority based data driven readout, zero-suppression intrinsically
- Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
- > Dead time: 2 clk for each pixel (50 ns @40MHz clk)

Two parallel pixel digital schemes

- > ALPIDE-like: Readout speed was enhanced for 40MHz BX
- FE-I3-like: Fully customized layout of digital cells and address decoder for smaller area

2-level FIFO architecture

- > L1 FIFO: In column level, to de-randomize the injecting charge
- L2 FIFO: Chip level, to match the in/out data rate between the core and interface

Trigger readout

- > Make the data rate in a reasonable range
- > Data coincidence by time stamp, only matched event will be readout

TaichuPix small prototypes overview

TaichuPix-1 Chip size: 5 mm \times 5 mm Pixel size: 25 μ m \times 25 μ m

 $\begin{array}{l} \mbox{TaichuPix-2} \\ \mbox{Chip size: 5 mm} \times 5 \mbox{mm} \\ \mbox{Pixel size: 25 } \mbox{\mu m} \times 25 \mbox{\mu m} \end{array}$

Two MPW chips were fabricated and verified

- > TaichuPix-1: 2019.06~2019.11
- > TaichuPix-2: 2020.02~2020.06

Chip size 5 mm×5 mm with standalone features

- In-pixel circuitry:
 - Continuously active front-end
 - Two digital schemes, with masking & testing config. logics
- > A full functional pixel array (64×192 pixels)
- Periphery logics
 - Fully integrated logics for the data-driven readout
 - Fully digital control of the chip configuration
- > Auxiliary blocks for standalone operation
 - High speed data interface up to 4 Gbps
 - On-chip bias generation
 - Power management with LDOs
 - IO placement in the final ladder manner
 - Multiple chip interconnection features included

Outline

- Status review
- Updates on test result
- Full size chip design

Chip to chip uniformity of threshold and noise

Bias setting: ITHR = 6.2 nA, VSUB = 0 V

- > Converting the noise/threshold voltage to electrons by 0.91 mV/e-
 - Charge injection capacitance in each pixel is 0.177 fF extracted from layout

Chip4	Threshold Mean (e-)	Threshold rms (e-)	Temporal noise (e-)	Total equivalent noise (e-)
S1	272.9	50.9	30.0	59.1
S2	299.9	55.7	27.5	62.1
S3	393.4	59.7	24.9	64.7
S4	421.0	57.8	27.0	63.8
Chip7	Threshold Mean (e-)	Threshold rms (e-)	Temporal noise (e-)	Total equivalent noise (e-)
Chip7 S1	Threshold Mean (e-) 308.2	Threshold rms (e-) 54.9	Temporal noise (e-) 31.5	Total equivalent noise (e-) 63.3
Chip7 S1 S2	Threshold Mean (e-) 308.2 320.5	Threshold rms (e-) 54.9 56.0	Temporal noise (e-) 31.5 28.1	Total equivalent noise (e-) 63.3 62.6
Chip7 S1 S2 S3	Threshold Mean (e-) 308.2 320.5 456.6	Threshold rms (e-) 54.9 56.0 65.8	Temporal noise (e-) 31.5 28.1 24.1	Total equivalent noise (e-)63.362.670.0

Simulated threshold and temporal noise

- Transient noise simulation with extracted layout of FE for different input charge → s-curve of one pixel → mean threshold and temporal noise
- Nominal design: Cd = 2.5 fF, AVDD = 1.8 V, ITHR = 4.5 nA

Sensor capacitance Cd has a direct effect on the threshold and noise level

- > Cd is strongly dependent on the substrate biasing
 - Cd =2.5 fF @ -6V SUB; Cd = 5fF @ VSUB = 0 V tested by CERN
- > The tested threshold 276 e⁻ agreed well with simulated 297 e⁻ at Cd= 5fF@ 0V SUB
 - Proves the pixel design, and the Cinj calibration gain
- The limit to further push down the threshold is that ITHR cannot be set smaller because of the leakage current from DAC

Working range of threshold and noise

 Measuring s-curve of one Db-col of S1 on Chip7 with different ITHR (current biasing)

25 June 2021, CEPC Day

Fake hit rate test at chip level

Hitmap for 2 hours(only S1 is enabled)

ITHR code	Fakehit	Total time (s)	Fakehit rate
3'b010	3238	7200	5.5e-12
3'b100	1/0/543	300	4.1e-14 /2.2e-11

Nominal setting in test (binary code =1000)

Sensor requirements for the ALICE ITS Upgrade for Inner Barrel (IB) and Outer Barrel (OB) [1].

Parameter	IB	OB
Sensor thickness (µm)	50	50
Spatial resolution (µm)	5	10
Dimensions (mm ²)	15×30	15×30
Power density (mW cm ⁻²)	300	100
Time resolution (µs)	30	30
Detection efficiency (%)	99	99
Fake hit rate ^a	10 ⁻⁵	10 ⁻⁵
TID radiation hardness ^b (krad)	2700	100
NIEL radiation hardness ^b	1.7×10^{13}	10 ¹²
$(1 \text{ MeV} n_{eq}/\text{cm}^2)$		

^a Per pixel and readout.

^b Including a safety factor of 10, revised numbers w.r.t. TDR.

Fake hit definition:

$$R_{fh} = \frac{N_{fh}}{N_{pix}N}$$

- > N_{fh}: fake hit counts
- > N_{pix}: total pixels for test
- N: sampled frame counts
 - =total time/25ns
- Compared with ALPIDE fake hit rate of 10⁻⁵, with a readout time (frame time) of 500 ns, the tested fake hit rate is low
 - > Frame rate is much higher
 - Threshold is set at relatively high level and cannot be pushed down further
- The test environment also suffers from EMC in the space with a sudden flash on image
 - can be improved with proper shielding for even lower fake hit rate

Summary of the test of TaichuPix-2

- Major functionality fully verified
- Detected bugs/problems solutions for the engineering run
 - Pixel matrix
 - ALPIDE-like approach not functioned
 - Not integrated in the full size chip
 - Tested noise/threshold higher than simulation, while the pixel design is the same
 - Mainly due to the increased Cd from 2.5fF to 5fF, while SUB was only biased at 0V
 - → Tested threshold at 0V SUB biasing agreed well with simulation
 - Threshold setting (ITHR) by DAC has to be pushed down, to have reasonable detection efficiency and spatial resolution for MIPs
 - Cinj can not be effectively calibrated
 - Kept unchanged for conservative consideration
 - > DAC
 - Large leakage current: threshold can not be set to the current as low as expected
 - New block designed specifically for low current path, bypass-able with the former design
 - Found non-linearity region in the transfer curve for all the DACs
 - Not critical for the biasing
 - > LDO not well functioned
 - Will only be involved as a test block (black box) in the engineering run
 - The full size chip has to be power supplied by independent powers

Outline

- Status review
- Updates on test result
- Full size chip design

Overview of the full size engineering run

- . Pixel array 1024*512
- 2. Periphery
- DAC & Bias generation
- Data interface
- 5. LDO (test blocks)
 - Chip interconnection features
- Scribe-able top power connection features

- Process: TowerJazz 180 nm 7M2L (2 Top Metal)
- Pixel cell copied exactly from MPW + scaled logic with new layout
 Periphery + debugged/improved blocks + enhanced power network

Full size chip dimension

All the four edges need at least ~50um for chip dicing remains

25 June 2021, CEPC Day

Design improvement for the full size chip

- Process improved for better power supply: 6 Metals to 7M with 2 Top metal
 - > Will help for the full size chip power integrity
- 25 μm×25 μm pixel, unique design (S1)
- A 1024×512 Pixel array

Periphery logics

> Unique design for FE-I3 like readout

High speed data interface

Optimized for trigger mode and low power:
 optional low power LVDS port added

On-chip bias generation

- > Bugs detected & solved from the Tcpx2 test
- IO placement in the final ladder manner
 - chip interconnection bus features included for ladder
 - LDO will be independently tested as a test block due to the remain issues

Power net arrangement in IO

227 IOs at the bottom

> 37 signal pads, 190 power pads

Power interface ports to the matrix

- > Analog: 18, furthest 2420um, longest supply path 48 column
- > Digital : 16, furthest 3300um, longest supply path 132 columns
- > Periphery: 15, furthest 3400um, longest supply path 1700um

Power Pads and power/bias rails at the top to help ease the IR Drop

- > 2 levels dice-able for complete power study
 - top IO+ power rails: full testability at the test board
 - Only with power rails:
 - extra power path; extra bias connection make the resistance half
 - Only 200um dead zone added, with noticeable improvement
 - Can be fully diced, left as a real chip for ladder

Functionality vs imperfect power supplies

- Measured s-curves of one double column of S1 on chip 7
 - > Lower power leads to obvious threshold shift and larger dispersion
 - Difference in AVDD changes the working point of FE
 - Decreasing AVDD and VRESET with same level results in slight changes in threshold distribution, but lower average temporal noise due to the fact that temporal noise decreases with VRESET
- Conclusion: chip can work at least 1.7V with VRESET tuned at the same level; requiring VRESET independently supplied to each chip on ladder

Transient response with IR drop in both directions

- IR drop in the vertical direc. shows larger effect than the horizontal direc.
- Cd with diff substrate voltage (5fF@0V/ 2.5fF@-6V) was considered, in normal condition,
 Cd is not at the minimum level
- Even in the worst case, analog output shows normal functionality and similar shape, the 25 Jundeziation of OUTA baseline will introduce an FPN of ~3.3 mV on the pixel threshold

CEF

FPN induced by IR-drop of power line

In the worst power case, the deviation on OUTA baseline will introduce an FPN_{power} of ~3.3 mV on the pixel threshold

	Threshold	Threshold	Temporal	Total equivalent
	Mean (mV)	rms (mV)	noise (mV)	noise (mV)
S1	248.3	46.3	27.3	53.75

> Total equivalent noise = $\sqrt{(\text{Threshold rms}^2 + \text{Threshold noise}^2 + FPN_{power}^2)}$ = 53.85 mV

FPN due to the power supply IR-drop increases the total equivalent noise by 1.9%

The effect of power IR-drop on the noise of pixel is acceptable.

Design goals & considerations for the Flex PCB

- Minimum material budget
 - Minimum dead zone extension, limited height of PCB
 - Minimum set of signals on Flex
 - Slow buses to go on chip area by chip interconnection buses
 - Robust power supply
- Manufacturability

CEPC

Testability design & test plan consideration

- All test features reserved, while the connected IOs will decrease at diff stages depending on chip test & study results
 - > Analog probe signals at the top part, accessible from the top pads
 - > When mounted on ladder, only minimum self test possibilities can be reserved

1. Probe Card design for the wafer test

For all the pads at both sides

2. Single chip test board design

> Designed with all the test features for the chip functional study

3. Multiple chip test board for the ladder debugging

- > Designed following the same manner as the ladder but on PCB
- > Signals and power supplies will be limited just with the ladder's dimension
- > Extra test signals can be connected to the extended area, to help debugging

4. The real flex cable design for the ladder

Summary & recent plan

- TaichuPix small prototypes were fully verified and preparing to submit the full size tapeout
 - > Full signal chain & functionality verified with both electrical & radioactive test
 - > TID performance satisfied with CEPC's requirement with a large headroom
 - > Design review finished

Recent plan

- > Design will be submitted for the engineering run after budget approval
- > Full chip simulation and verification till the real submission
- Wafer probe card design
 - June ~ August
- Single chip study board design
 - June ~ August
- Multiple chip study board design
 - June ~ August
- Flex cable design
 - April ~ ?

25 June 2021, CEPC Day

Thank you for your attention!

Backup

Main specs of the full size chip for high rate vertex detector

Bunch spacing

- > Higgs: 680 ns; W: 210 ns; Z: 25 ns
- Meaning 40M/s bunches (same as the ATLAS Vertex)

Hit density

 2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for Z

Cluster size: 3pixels/hit

- > Epi-layer thickness: ~18 µm
- > Pixel size: $25 \ \mu m \times 25 \ \mu m$

BX] <u> </u> A Pair Production Bkg $[hits/cm^{2}]$ √s= 91 GeV 160 GeV √s= 240 GeV $\stackrel{O}{\Delta}$ U Density Δ 10⁻ Θŕ 10^{-3} 1 2 3 4 VXD Radius [cm]

From the CDR of CEPC

For Vertex	Specs	For High rate Vertex	Specs	For Ladder Prototype	Specs
Pixel pitch	<25 µm	Hit rate	120 MHz/chip	Pixel array	512 row × 1024 col
TID	>1 Mrad	Date rate	3.84 Gbps triggerless ~110 Mbps trigger	Power Density	< 200 mW/cm ² (air cooling)
		Dead time	<500 ns for 98% efficiency	Chip size	~1.4 cm×2.56 cm

Test of the data interface

Measure

value

mean

max

sdev

num

status SDA Jitte

value

status

value

status

SDA Eve

P1:freg(C1)

255.2 MHz

1 8142 GHz

14.389e+3

Tj(1e-12)

123.27 ps

EveHeight

479.8 mV

447.550 MHz

1 1076 GHz

1.036750 GHz

P2:ampl(C1)

> 889.8 mV

> 903.732 mV

> 850.4 mV

> 979.1 mV

> 26.016 mV

4.84 ps

EveOne

404.1 mV

P3thase(C1)

< -460.9 mV

< -541.6 mV

< -421.1 mV

< 20.392 mV

173

Dj(sp

54.26 ps

EveZero

-431.1 mV

< -466.151 mV

P4/ton(C1) P5/ermsi(Eve)

BitRate

EveAmpl

835.2 mV

162 ns

16.2 ps

16.2 ps

16.212 ps

428.9 mV

437.581 m\

> 349.8 mV

> 483.3 mV

> 14.592 mV

173

3.3600 Gbit/sec

P6:eppi(Eve)

115 0 ps

115.034 ps

115.0 ps

115.0 ps

7.15 ps

EveWidth

200.3 ps

P7:Q(Eve)

7 0496

7 0496

7 0498

51 ps

EveCross

50.01 %

7.049625

P8:ndcd(Eve)

18e-3

18e-3

DCD

1 ps

EveAvgPwr

-11.4 mV

18e-3

18.14e-3

P9:enni/Eve)

DD

51 ps

1.524591e+6 914.388622e-15

MaskHits

P10--

EveBER

P12--

@3.36Gbps

- Concerning the highest data rate for triggerless at 4Gbps, at least 2 SER interface ports needed
- Thus bit rate @2.24Gbps is safe and power optimized

Design variations of pixel array in TaichuPix-2

Sector	Pixel front-end	Pixel digital	Pixel size
S1	Same as S1 of TC1, reference design	FEI3-like	25 µm × 25 µm
S2	M6 with guard-ring, PMOS in independent nwell	FEI3-like	25 µm × 25 µm
S3	M6 in enclosed layout, PMOS in independent nwell	FEI3-like	25 µm × 24 µm
S4	Increasing M3, M4, M9. M6 in enclosed layout, PMOS in independent nwell	FEI3-like	25 µm × 25 µm
S5	Same FE as S2, with smaller sensor	ALPIDE-like	25 µm × 25 µm
S6	Same FE as S1	AI PIDE-like	25 um × 25 um

25 June 2021, CEPC Day

Overview of previous test results

Analog output of a pixel with a voltage input

Analog output with ⁹⁰Sr exposure

25 June 2021, CEPC Day

Electrical test

 Electrical performance verified by injecting external voltage pulses into pixel front-end

