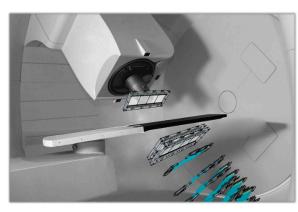
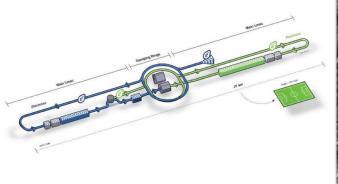
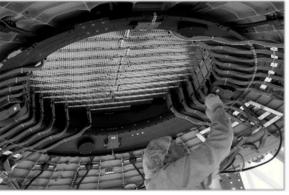
ARCADIA Status Report

CEPC Day June 25th, 2021

Istituto Nazionale di Fisica Nucleare


Manuel Da Rocha Rolo (INFN) on behalf of the ARCADIA Collaboration


ARCADIA: CMOS DMAPS platform at INFN

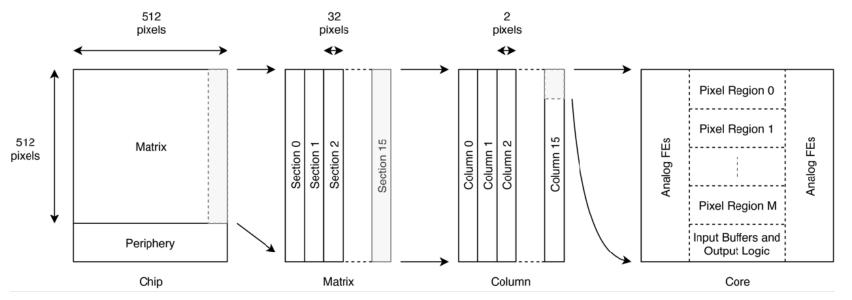

What do we want: to develop a design and fabrication platform for large-area fully-depleted CMOS sensors, at the moment targeting space, medical and future HEP infrastructures (thin sensors) and X-ray detectors (thicker sensors)

What do we need from the silicon foundry:

- access to an engineered CMOS process (developed in collaboration with LFoundry) and custom starting substrates
- access to future SPW runs for dedicated reticle size (next 3 years) and larger-than-reticle (from 2023) designs

Medical

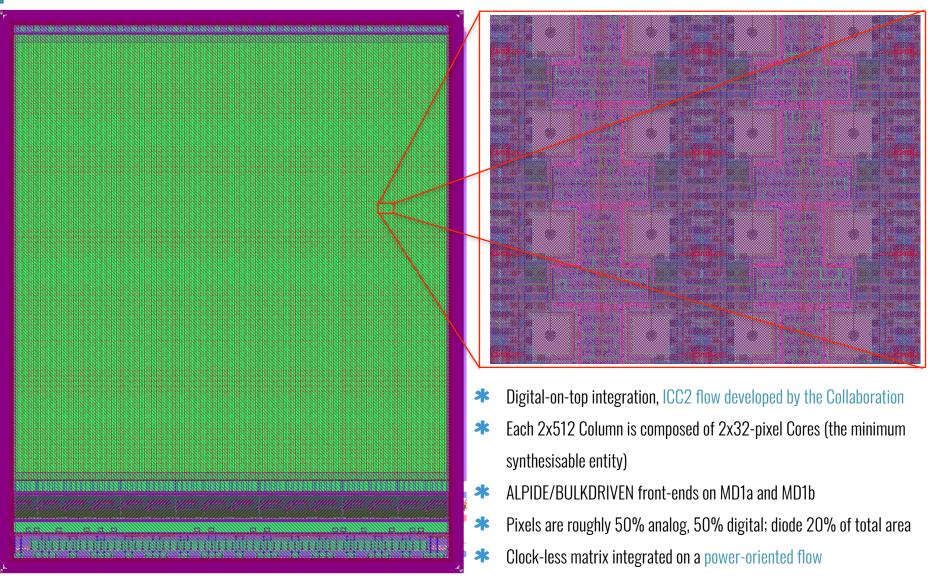
- Low power ($\leq 40 \text{ mW/cm}^2$)
- Medium rate \approx 10 MHz 100 MHz/cm²
- Ultra low material budget (low energy)
- Very large area (≥ 16 cm²)
- 3-side buttable design
- Low to medium rad-tolerance \approx 10 kGy


e⁺e⁻

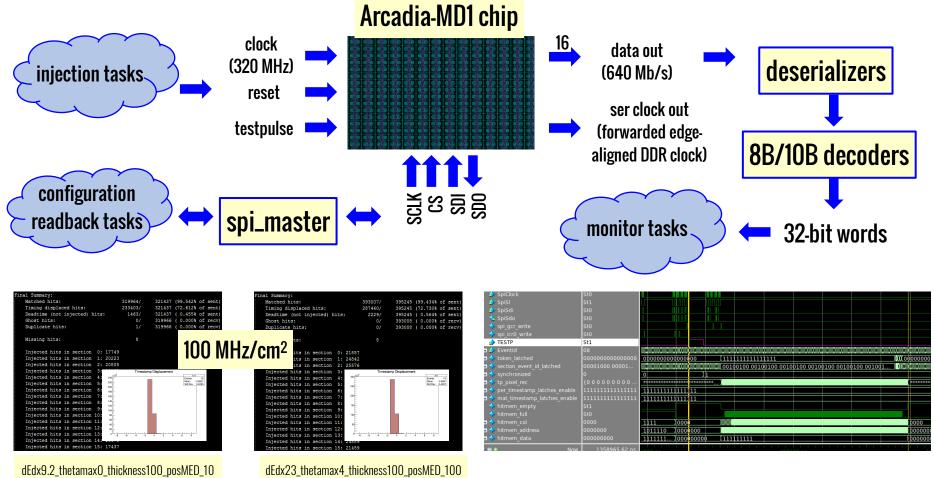
- Low power ($\leq 40 \text{ mW/cm}^2$)
- Medium rate ≈ <u>10 MHz 100 MHz / cm²</u>
- Very low material budget
- Large area (≥ 6 cm²)
- 3-side buttable design
- Low to medium rad-tolerance \approx 10 kGy

Space

- <u>Ultra low power (≤ 10 mW/cm²)</u>
- Very low rate ≈ kHz/cm²
- Low material budget
- Large area (≥ 6 cm²)
- 3-side buttable
- Low rad-tolerance ≈ 1 kGy


ARCADIA-MD1: Main Demonstrator Chip

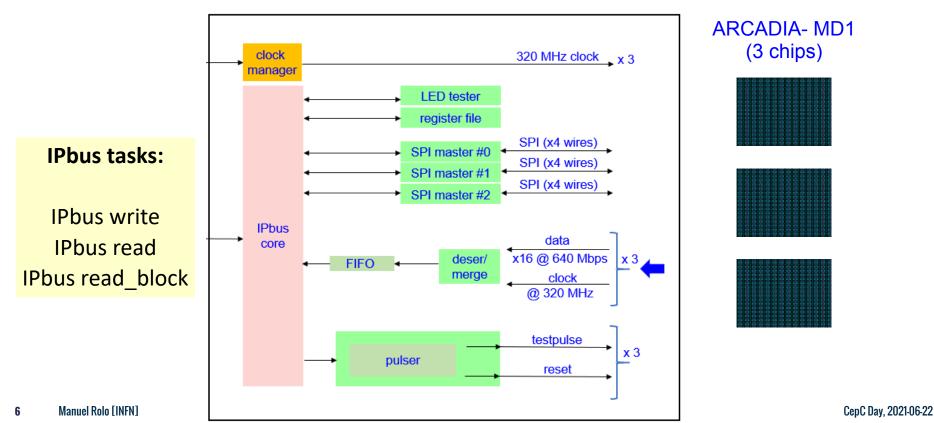
- Pixel size 25 µm x 25 µm: process, back-side pattern and geometry validated in silicon (both MATISSE and pseudo-matrices, electrical, laser, radioactive source and microbeam).
- Matrix core 512 x 512, "side-abuttable" to accomodate a 1024 x 512 silicon active area (2.56 x 1.28 cm²). Matrix and EoC architecture, data links and payload ID: scalable to 2048 x 2048*
- Triggerless binary data readout, event rate up to 100 MHz/cm²
- First Engineering Run (SPW) with ARCADIA-MD1 by 11/2020, 2nd full CMOS maskset mid-2021 (higher data throughput, SEU protection, on-chip data compression), 3rd SPW mid-2022 with design fixes, explorative sensor and CMOS designs


ARCADIA - Main Demonstrator Chip

ARCADIA-MD1 Verification Framework

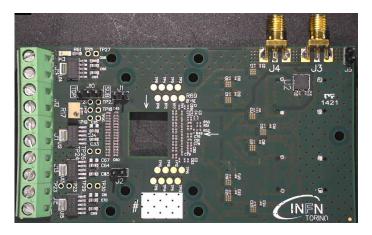
OMHz_50mmColl_uniform

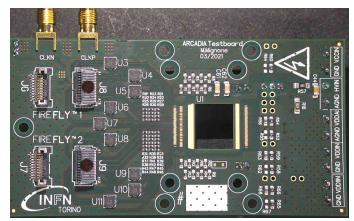
Manuel Rolo [INFN]


5

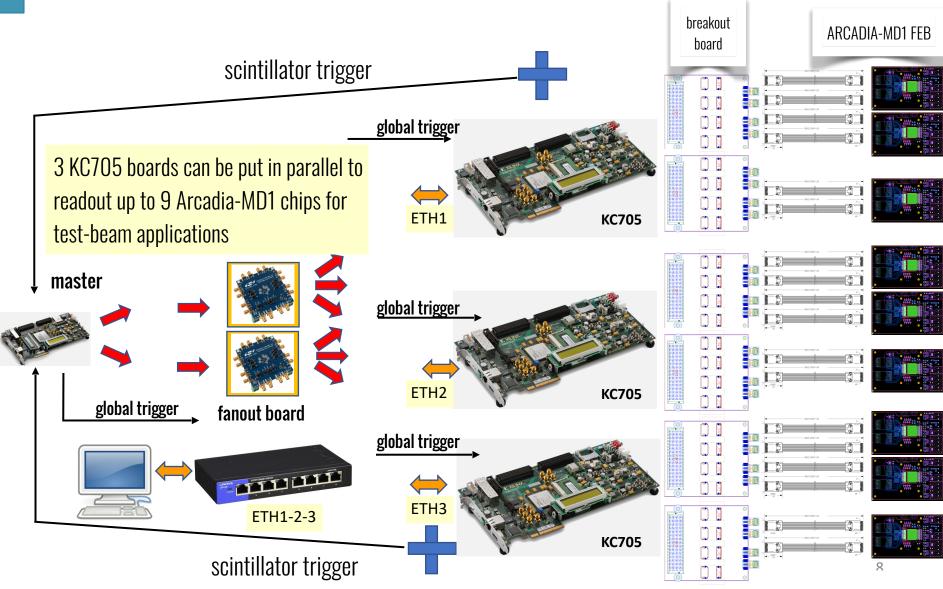
MHz_50mmColl_uniform

ARCADIA DAQ Firmware




- The DAQ firmware blocks have also been inserted into the same simulation framework used for the ARCADIA-MD1 chip verification;
- * We currently have a **universal simulation framework** in which the **ARCADIA-MD1 chip is configured and readout** via IPbus atomic operations **through the DAQ blocks**. This list of atomic operations is also being translated into the software running on the PC, which is being designed.

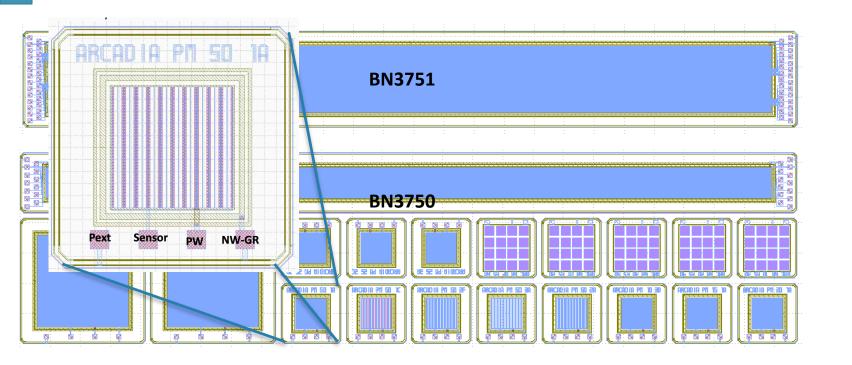
Front-End and Breakout Boards



- 2 Samtec FireFly connectors for ASIC signals (Clock, SPI, Data)
- Possibility to use both an external low jitter Clock (via SMA connectors) or the clock provided by the FPGA
- Possibility to connect the high voltage on the DMAPS substrate or via the (wire bonded) pads on top
- Independent voltage regulators for the regional domains on-chip (IO Buffers, Analog Core, Digital Core)
- PCB through-hole for matrix BSI
- \blacktriangleright custom FMC-to-Firefly breakout board

CepC Day, 2021-06-22

Multi-plane MD1 Telescope Configuration



Pixel/Strip Test Structures

BN3

49

***** strips come in different flavours:

- 25 μ m pitch pixelated + 25 μ m continuous (10+10) [2 variants]
- 10 µm pixelated (4 groups of 12 strips connected to pads) [4 variants]

\ast and pixels as well:

- Pseudo-Matrices of 1x1 and 2x2 mm²
- 50 μm (5 variants)
- 25 µm (3 variants)
- 10 µm (6 variants)

Getting ready for silicon: priorities

* Measurements on bonded test structures (first non-irradiated and then irradiated with xrays and neutrons), front-side and back side

- IV curves with temperature, extraction of depletion, punch-through voltages, dark current and capacitance
- Charge collection with focused pulsed laser (back-side). On pixels: only signal evolution with time and position of the laser spot. On strips: charge sharing is also possible.
- Lab. sources. (top-side and back-side)

***** Characterisation of the ARCADIA-MD1

- functional and electrical characterisation (basic functionalities with on-chip test pulse and hit injection, scurves, threshold calibration, rate assessment)
- laser scans with red and IR light (CCE vs bias voltage, uniformity, clustering and resolution)
- tests with x-ray and radioactive sources (55Fe, 241Am, 90Sr)
- cosmic ray stand (sync and event building, efficiency, resolution) and beam tests with MD1 telescopes

Platform for sensor design and fabrication

Discussion on the use of SEED/ARCADIA for the R&D towards CEPC started in 2019.

2019-11-25

INFN and IHEP can share CMOS design databases and program shared tapeouts to foundry

* Discussion started on <u>design and fabrication flow towards a Joint IHEP-INFN MAPS</u>:

- INFN provides IHEP with a signal sample database and a simplified sensor geometry
- ▶ IHEP designs (in-house or in cooperation with INFN) a CMOS MAPS using LFoundry LF11is
- ▶ INFN cares the final DRC on IHEP's gds2, validation of the design and production

ARCADIA: status and plans in a nutshell

- *** ARCADIA** has now secured a total budget of 1.4 M \in with several groups working on:
 - Sensor R&D and Technology
 - CMOS IP Design and Chip Integration
 - Data Acquisition for electrical characterisation and beam tests with multi-chip telescopes
 - Radiation Hardness qualification
 - System-level characterisation for Medical (pCT), Future Leptonic Colliders and Space Instruments

* Schedule for 2021-2022

- ▶ all hardware and firmware ready for testing, first silicon just delivered
- Ist SPW run included <u>800 mm2 of innovative DMAPS</u>, sensor and CMOS technology (first tests on sensors are ok, wafers currently being diced)
- 2nd run mid-2021: in preparation, <u>3rd run planned for mid-2022;</u>

Thank you for listening!

