Particle-yield modification in jet-like azimuthal V⁰-hadron correlations in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE at the LHC

Mustafa Anaam Central China Normal University on behalf of ALICE Collaboration

PT 2021 The 14th Workshop on QCD Phase Transition and Relativistic Heavy-Ion Physics (QPT 2021)

Motivation

- near-side jet is more biased to the surface of the QGP - should be more pronounced for gluon jets [1]
- on the away-side: The suppression of the yield is due to the energy loss in the QGP

on the near-side:

 $I_{\rm AA}$ provides information about the fragmenting jet leaving the medium

$$I_{AA} = \frac{Y_{\Delta\varphi}^{Pb-Pb}}{Y_{\Delta\varphi}^{pp}}$$

I_{AA}: probes the interplay between the parton production spectrum, the relative importance of quark– quark, gluon–gluon and quark–gluon final states

[1] arXiv:nucl-th/0512076

Motivation

PRL 108,092301(2012)

• Previous measurement of I_{AA} for

$$\circ$$
 h − *h* at $\sqrt{s_{\rm NN}} = 2.76$ TeV
 \circ $\pi^0 - h$ at $\sqrt{s_{\rm NN}} = 2.76$ TeV

Why we measure *I*_{AA} for V0-h?

considering K_s^0 and Λ are proxies of quark and gluon jets, we want to investigate :

- the difference of the parton energy loss effects on quark and gluon jets
- the difference in the interaction amplitude with the medium for the quark and gluon jets

ALICE detector setup

Strange- hadrons Correlations

- the near-side peak size is slightly larger for the Pb–Pb collisions
- away-side peak strongly suppressed in the Pb–Pb collisions in contrast to the pp

- Iow p_{T,assoc}: strong enhancement in near-side and away-side for all particles species
 high p_{T,assoc}: suppression in away-side, no modifications in near-side for all particles species
- no significant specie-dependence in I_{AA} within uncertainties specially in away-side

I_{AA}:compare with published

• new measurement consistent with previous ones at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

as expected

per-trigger yields associated with Λ are higher than those with K_s^0 in рр

in the Pb–Pb collisions, 0 the difference is almost not visible

Jet-like yield ratios to h-h yields(model comparison)

 EPOS, PYTHIA qualitatively describes the ratios in pp

 EPOS, HIJING qualitatively describes the ratios at high p_T in Pb–Pb

Jet-like yield ratios to h-h yields(model comparison)

EPOS, PYTHIA qualitatively describes the ratios in pp

HIJING qualitatively describes the ratios in Pb–Pb

Jet-like yield ratios to h-h yields $@\sqrt{s} = 13$ TeV model comparison

14 16) $3 < p_{T}^{\text{trigg}} < 4 \text{ GeV}/c$

 $5 < p_{\tau}^{\text{trigg}} < 6 \text{ GeV}/c$

 $6 < p_{\tau}^{\text{trigg}} < 7 \text{ GeV}/c$

 $7 < p_{\tau}^{\text{trigg}} < 9 \text{ GeV}/c$

 $9 < p_{\tau}^{\text{trigg}} < 11 \text{ GeV}/c$

 $11 < p_{\tau}^{\text{trigg}} < 15 \text{ GeV}/c$

10 12 14

 p_{-}^{assoc} (GeV/c)

 $Y_{\Delta\phi}^{(\Lambda+\overline{\Lambda})-h}/Y_{\Lambda\phi}^{h-h} < p_{T}^{trigg} < 5 \text{ GeV}/c$

arxiv/2107.11209 $\mathbf{v}h-h$ vh-h

- the ratios of different $p_{T,trig}$ with $p_{T,assoc}$ compared with EPOS, PYTHIA8-Monash and PYTHIA8 shoving g3
- Similar trend in pp $\sqrt{s} = 5$ TeV at high $p_{T,trig}$

- ratio with PYTHIA8 exclusive hard processes containing only: $q + \overline{q} \rightarrow q + \overline{q}$ or $g + g \rightarrow g + g$.
- the ratio in case K_s^0 -triggered yields is almost identical for both quark and gluon jets.
- the ratio in $case(\Lambda + \overline{\Lambda})$ -triggered yields from gluon jets is significantly higher than the one from quark jets.
- The difference in the ratio caused by the bias towards gluon jets through triggering with Λ or $\overline{\Lambda}$.

Summary

★ We studied near-side and away-side yield, yield ratio to h-h and I_{AA} for (K⁰_s-h), (Λ + Λ̄) - h and (h - h) in pp and Pb-Pb (0-10%)

- Clear ordering on the near-side yield in pp and no strong trigger particle dependence in Pb–Pb
- I_{AA} shows strong enhancement at low p_{T,assoc} in near-side and away-side for all particles species
- I_{AA} shows strong suppression at high $p_{T,assoc}$ in away-side for all particles species
- I_{AA} shows no significant specie-dependence specially in away-side.
- A difference between jet-like yields triggered with K⁰_s and Λ with respect to charged hadron was observed in pp collisions while in Pb Pb collisions the difference is almost not visible

We compared the result with published and model calculations.

- I_{AA} shows good agreements with published result from $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- AMPT performs better than other models in Pb–Pb while PYTHIA and EPOS perform better than other models for pp
- Similar trends of jet-like yields triggered ratios of K_s^0 and Λ to h-h has been observed at 13 TeV.
- triggering with $(\Lambda + \overline{\Lambda})$ caused a bias towards gluon jets.

Back-up

New

pp

Jet-like yield Model comparison

ALI-PREL-491128

AMPT, EPOS and PYTHIA 0 qualitatively describes the yield in pp except lowest p_T

AMPT and EPOS qualitatively 0 describes the yield in Pb–Pb

ALI-PREL-491123

Jet-like yield Model comparison

ALI-PREL-491088

 AMPT, EPOS and PYTHIA qualitatively describes the yield in pp except lowest p_T

AMPT and EPOS qualitatively describes the yield in Pb–Pb except lowest p_T

19

New

pp

Jet-like yield Model comparison

ALI-PREL-491108

AMPT, EPOS and PYTHIA qualitatively describes the yield in pp except lowest p_T

AMPT qualitatively describes 0 yield in Pb–Pb except lowest p_T .