Constraining the CMW with ESE in Pb-Pb 2.76 TeV

Wenya Wu, Qiye Shou, Chunzhen Wang Fudan University, Shanghai

中国ALICE实验学术研讨会贵阳 2021, 07, 31

CMW and LCC background

- CMW \rightarrow electric quadrupole momentum $\rightarrow A_{ch}$ dependent v_2
- Experimental observable : $\Delta v_2 \equiv v_2^- v_2^+ \simeq rA_{ch}$
- Linear dependence for $\Delta \langle v_2 \rangle A_{ch}$ can't reflect the charge separation
- LCC most important background in CMW research!

Event Shape Engineering

- Qn is estimated with VOM (will cross check TPC)
- Investigate the slope parameter in 10 qn bins
- Integral Covariance is better than slope in this sense

 $Q_{n,x} = \sum_{n,x} \cos(n\phi_i), \quad Q_{n,y} = \sum_{n,y} \sin(n\phi_i)$

C. Z. Wang, W. Wu. et al. arXiv:2104.05551v1

Model results & Key idea: Bkg (Blast wave + LCC): observable linearly depends on v_2 (sensitive to ESE) Sig (AMPT + quadrupole): constant Bkg + Signal: $b + a_{Bkg}v_2 = F_{data}(v_2)$

Data Set and Cuts

Collision system

Data Peroid

Energy

No. of events

MC data (for NUE correction)

Event Cuts

Track Cuts

Trigger

Centrality

Qn-vector

Pb-Pb
LHC10h
2.76 TeV
~12M(LHC10h)
LHC12a17a fix
vz <10, pileup removal
FB 1, nhits>70, 0.1 <chi2<4< th=""></chi2<4<>
kMB+kCentral+kSemiCentral
VOM
VOC

Integral Covariance between v_2 and A_{ch}

Integral three-particle correlator:

$$\left\langle v_2^{\pm}A \right\rangle - \left\langle A \right\rangle \left\langle v_2^{\pm} \right\rangle \approx \mp r \sigma_A^2 /$$

where v_2 is calculated in QCumulants method (subEvent gap = 0.3). Same as ALICE(2016) paper

$/2; \ v_2^{\pm}\{2\} = d_2\{2\} / \sqrt{c_2\{2\}}$

Integral Covariance Vs. Centrality

- Splitting of Integral Covariance
- Higher qn -> larger cov.
- qn is not corrected by recentering

Scale with $2/\sigma_A^2$

- characterized by σ_A^2 (or $dN_{ch}/d\eta$)
- There's a factor between the slope and the integral covariance • σ_A^2 is the width of the A_{ch} distribution (fitted by gaus)
- Scale with $2/\sigma_A^2$
- A_{ch} distribution should be calibrated

high multiplicity -> large dN/dη -> narrow Ach distribution -> small σ_{Λ}^2 Scaled Int. Cov. shows a clear dependence on Qn in most centralities

Cov. Vs. v2

Cov. Vs. v2 (in different centralities)

- In most centralities, cov. proportionally change with $\langle v_2 \rangle$. Small $\langle v_2 \rangle \rightarrow$ smaller COV.
 - Linear fit: $F(v_2) = a \times v_2 + b$
- Intercept **b** can be used to quantify the CMW signal

Extraction of fCMW

- For those non-negative intercepts, fCMW is extracted
- Need further study to make solid conclusion.

• Intercept parameters are consistent with zero within errors in most centralities

Summary and outlook

- First attempt to extract the fraction of the CMW signal with ESE
- Intercepts are consistent with zero within errors in most centralities
- V0 Calibration (Qn)

Outlooks

- Improving the method for ESE
- Cross check the ESE performance with TPC
- More Statistic
- Investigating the possible contributions that influence the fitting results
- Other data sets; covariance for v_3 ;

• Clear evidence of Int. Cov. linearly depending on v_2 , indicating the existence of the LCC

Thanks For Attention!