Ecal Reconstruction algorithm

Previous remind

Input: Digitalized crystal bars.

- Time resolution: 0.5 ns smearing (~0.3 ns in readout).
- Fired energy threshold: 100 keV.
- Attenuation length: ∞ .
- Calibration: not considered.

Reconstruction:

- 1D clustering & cluster splitting:
 - "Seed" in 1D cluster: local maximum && E>5MeV (~0.5MIP).
 - If ≥ 2 seeds in one cluster: split with transverse profile.

2D matching: match X-Y bars to showers in plane:

• 3D clustering:

Issues in reconstruction

Issue 1: Fluctuation in 1D clustering.

- Solution: longitudinal information: fluctuation would not appear in the same position in 2 layers.
- Sub-issue 1.1: little showers (e.g. MIP beside an EM shower) is easily to be regarded as fluctuations
 - Solution: use track information to confirm the little shower.

Issue 2: X-Y Matching in layer (ghost hit problem)

- Solutions: (ordered by priority)
 - Track information.
 - Longitudinal information.
 - Timing information: chi2 matching.

Issue 3: 3D cluster association

• Solution: Merge with topology one by one (undergoing).

Final reconstruction flow

Single Photon, 10GeV

Single Muon, 10GeV, no magnetic field.

2021/6/22

10GeV photon + 10GeV photon, $\Delta x = \Delta y = 5cm$

2021/6/22

Performance check

Summary

Level 1: single photon, single muon (MIP)

~100% efficiency, energy resolution ~1% for 10GeV (stochastic term ~3%).

Level 2: γ + muon, γ + γ (ghost hit problem)

- >95% efficiency, $\sigma_E/E \sim 1\%$ in γ + muon, $\sigma_E/E \sim 3.5\%$ in $\gamma + \gamma$ (confusion term).
- No ghost hit appears.

Level 3: hadrons

- Single hadron: 20% lost the object.
- $\gamma + \pi^-$: 16% lost objects, 1% have multiple objects.
- Need to consider hadronic cluster identification and merging.

Next step

Hadronic shower:

• Shower modelling, merging, ghost hits with hadronic showers(complex case).

Jet reconstruction:

- Option1: depart clusters into fine granularity hits (1*1*2, e.g.), use Pandora/Arbor for jet reconstruction.
 - Pros: convenient, compatible for Hcal reconstruction.
 - Cons: lost precision from energy splitting with profile.
- Option2: finalize this new PFA
 - Need to deal with:

Cluster merging algorithm.

Cluster cover >=2 modules, gaps in detector.

Hcal reconstruction: link with Arbor clusters.

Final reconstruction flow

