Update of the CEPC AHCAL Prototype

Yunlong Zhang

State Key Laboratory of Particle Detection and Electronics, China

University of Science and Technology of China

On behalf of CEPC Calorimeter working group

- ➢ Brief review of AHCAL of CEPC
- CEPC AHCAL Status
 - Scintillators mass production and test
 - ➢SiPM procurement and test
 - ➤HBU design and test
 - Assembly of scintillator to HBU
 - ➤ Mechanical Design
- Summary and outlook

AHCAL Prototype

Sampling Calorimeter

- 40 layers, ~ 5 N.I.L
- -72 cm \times 72 cm
- Absorber
 - Iron, 2 cm thickness
- Sensitive Detector
 - Scintillator+SiPM
 - Cell size: 40 mm×40 mm×3mm
 - SiPM: HPK and NDL

• Electronics

- SPIROC2E ASIC Chip

AHCAL Structure

Scintillator mass production and packaging

- More than 10000 scintillators were produced based on ejection molding and packaging using ESR film
- Another 5000 tiles will be finished in the end of June

All the packaged scintillators (~10000) have been tested
SJTU, USTC, IHEP

 After the remaining 5000 pieces are produced, batch testing will be started

tit is planned to be completed by the end of July

SiPM Procurement and testing

- Two different types SiPM were selected in this prototype
 - ♦ NDL, 3000 pieces, end of June
 - ◆ HAMAMATSU, ~12000 pieces, end of August

Company	NDL	НРК
Туре	22-15	S14160-1315PS
Sensitive area (mm ²)	1.6*4	1.69
PDE (%)	40	32
Gain (*10 ⁵)	2.4	3.6
Pixel No.	7400*4	7284
Breakdown Voltage (V)	19	38
OverVoltage (V)	4	4
Dark Count (kHz)	330*4	120
Cross Talk (%)	8.5	1.0

NDL

S14160-1315PS

SiPM bench test system

- SiPM test platform
 - Batch testing
 - I-V curve, dark count, gain
 - For best operating conditions

SiPM photon electron spectrum

- SiPM cell difference
 - Completely same operation

SiPM Dark Counting Rate

- S curve at 1 p.e.
 - 1 p.e. ~ 45ADC
 - Close to Pedestal
- DCR of SiPMs
 - OR-16 counter for 1s
 - Tested at 22.7V
 - 440~680 kcps

SiPM I-V curve

- I-V curves of 16 channels
 - Operated from 21.5V to 27.5V
 - I can be measured when V_{op} >23V

HCAL Baseboard Unit Status

- One layer has 3 sub-HBUs
- One sub-HBU is 78.5×24 cm²
- Flexible boards are used to transmit power and signal between the 3 sub-HBUs and DIF
- Each sub-HBU has 3 SPIROC2E chips
 - The chips were packaged in China

AHCAL

2021/6/9

Data InterFace (DIF) board

11

Pedestal of HBU

- The pedestal of each channel was calibrated using random trigger
- The pedestal positions are differences between chips
- The channels of the same chip are relatively uniform
- The pedestal width has little to do with the chip

The pedestal of one channel

The pedestal of each channel in HBU

HBU LED Calibration

- LED calibration system was used to calibrate the gain of SiPM, and monitor the stability
- The driving circuit excites the LED to emit light
- The light will incident on the SiPM
- The single photon electron spectrum could be calibrated while the light is weak

HBU temperature Monitor

- Each sub–HBU has 16 temperature sensors to monitor the temperature real time
- The temperature data could be used to adjust the operation voltage of SiPM on line or to correct it off line

HBU Support Frame

- The size of HBU is so large
- a supporting structure is needed to protect the chips and components from the deformation of HBU

Gravity causes deformation of HBU

Thickness of supporter (mm)	Deformation (mm) Al vs. Fe
3	2.5 / 1.4
4	1.4 / 0.7
5	0.8 / 0.4

15

HBU Support Frame

- A 5mm thick AI support frame is machined for trial assembly and testing with HBU
- The optimization of the support frame will be discussed next step

Prototype Mechanical design

- A preliminary discussion was done about the AHCAL design with the mechanical expert of IHEP, and further discussion will be carried out
- Pro. Haijun Yang arranged students to do temperature simulation about AHCAL

Assembly of scintillator to HBU

Assembly process

	 	 1							

- 2021.7.31 the remaining 5000 scintillators production and testing could be finished
- 2021.8.31 the mechanical design should be completed
- 2021.9.30 the SiPMs should be tested completed, and prepared for HBUs
- 2021.12.31 The mechanical structure should be finished
- 2021.12.31 HBUs need to complete electrical installation and testing
- 2022.1.31 The assembly of scintillators to HBUs are completed
- 2022.6.30 cosmic test and AHCAL assembly
- 2022.7.31 The calorimeter is ready for the beam test

backup

